21 research outputs found

    Integrated constraints on explosive eruption intensification at Santiaguito dome complex, Guatemala

    Get PDF
    Protracted volcanic eruptions may exhibit unanticipated intensifications in explosive behaviour and attendant hazards. Santiaguito dome complex, Guatemala, has been characterised by century-long effusion interspersed with frequent, small-to-moderate (<2 km high plumes) gas-and-ash explosions. During 2015–2016, explosions intensified generating hazardous ash-rich plumes (up to 7 km high) and pyroclastic flows. Here, we integrate petrological, geochemical and geophysical evidence to evaluate the causes of explosion intensification. Seismic and infrasound signals reveal progressively longer repose intervals between explosions and deeper fragmentation levels as the seismic energy of these events increased by up to four orders of magnitude. Evidence from geothermobarometry, bulk geochemistry and groundmass microlite textures reveal that the onset of large explosions was concordant with a relatively fast ascent of a deeper-sourced (∌17–24 km), higher temperature (∌960–1020◩C) and relatively volatile-rich magma compared to the previous erupted lavas, which stalled at ∌2 km depth and mingled with the left-over mush that resided beneath the pre-2015 lava dome. We interpret that purging driven by the injection of this deep-sourced magma disrupted the long-term activity, driving a transition from low energy shallow shear-driven fragmentation, to high energy deeper overpressure-driven fragmentation that excavated significant portions of the conduit and intensified local volcanic hazards. Our findings demonstrate the value of multi-parametric approaches for understanding volcanic processes and the triggers for enigmatic shifts in eruption style, with the detection of vicissitudes in both monitoring signals and petrological signatures of the eruptive products proving paramount

    A model for permeability evolution during volcanic welding

    Get PDF
    Volcanic ash and pyroclasts can weld when deposited hot by pyroclastic density currents, in near-vent fall deposits, or in fractures in volcano interiors. Welding progressively decreases the permeability of the particle packs, influencing a range of magmatic and volcanic processes, including magma outgassing, which is an important control on eruption dynamics. Consequently, there is a need for a quantitative model for permeability evolution during welding of ash and pyroclasts under the range of conditions encountered in nature. Here we present in situ experiments in which hydrous, crystal-free, glassy pyroclasts are imaged via x-ray tomography during welding at high temperature. For each 3D dataset acquired, we determine the porosity, Darcian gas permeability, specific surface area, and pore connectivity. We find that all of these quantities decrease as a critical percolation threshold is approached. We develop a constitutive mathematical model for the evolution of permeability in welding volcanic systems based on percolation theory, and validate the model against our experimental data. Importantly, our model accounts for polydispersivity of the grainsize in the particle pack, the pressures acting on the pack, and changes in particle viscosity arising from degassing of dissolved H2O during welding. Our model is theoretically grounded and has no fitting parameters, hence it should be valid across all magma compositions. The model can be used to predict whether a cooling pyroclast pack will have sufficient time to weld and to degas, the scenarios under which a final deposit will retain a permeable network, the timescales over which sealing occurs, and whether a welded deposit will have disequilibrium or equilibrium H2O content. A user-friendly implementation of the model is provided

    Bubbles, Crystals and Cracks in Cooling Magma

    Get PDF
    Ascent of magma results in drastic drops of pressure and temperature during eruption. Exsolution or dissolution of water changes the physical and chemical properties of the magma and can promote or inhibit the formation of bubbles, crystals and cracks. The microstructural relations between bubbles, crystals and cracks are important records of processes immediately before and during volcanic eruptions and during deposition of volcanic products. This is an integrated study of analyses, conceptual and numerical models of textural relations, and water distribution patterns of natural and experimentally altered samples. Synchrotron Fourier transform infrared spectroscopy and focal plane array detectors open new possibilities for the analysis of the spatial distribution of volatiles in volcanic rocks. New ways of sample preparation, measurements and data analyses helped to create water distribution maps with spatial resolutions that are close to the diffraction limit (~3 ÎŒm). In order to constrain eruptive processes and mechanisms of lava emplacement, I describe textural features in volcanic glasses including bubbles, flow bands of crystals or bubbles, spherulites and different generations of cracks. In experiments, bubbles were grown under isobaric conditions, at one or two cooling steps, their textures were described and volume changes tracked. Water distribution patterns in the glass around the textures were described and categorized, and where possible, diffusion modeling was used to infer temperature- and timescales of formation. Rocks that are quenched within short periods of time after bubble growth preserve negative gradients of water toward the bubble margins. These gradients are generally not observed if the sample is kept at high temperatures for extended periods. If, however, a second step of cooling is added, water may be re-dissolved into the surrounding melt, which may lead to the complete resorption of bubbles. A conceptual of water redistribution during bubble resorption or collapse is used to interpret water heterogeneities across linear flow banding. These heterogeneities can be caused by shearing of bubbly magma, leading to collapse, degassing and resorption of water into the melt, creating a bubble free melt. Anhydrous spherulitic crystals grow both above and below the glass transition temperature (Tg) redistributiong water into the surrounding melt. Below Tg, cracks form and are successively hydrated by magmatic water from crystal growth or by meteoric water at temperatures far below Tg. The hydrated perlitic cracks in the samples of this study formed at elevated temperatures and are distinct from cracks formed at ambient temperatures without hydrated margins. This study shows that the heterogeneous distribution of water in volcanic rocks preserves the complex and non-linear degassing and cooling history of eruptive products. The timescales and temperatures discovered here provide new ways to interpret textural observations, water distribution patterns and signals of shallow volcanic unrest

    Outgassing from Open and Closed Magma Foams

    Get PDF
    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The reorganization, failing and sealing of bubble walls may contribute to the opening and closing of the volcanic system. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950°C for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens non-linearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace to allow open system outgassing, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e., skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurization in the vesiculated magma. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas

    Exhumed conduit records magma ascent and drain-back during a Strombolian eruption at Tongariro volcano, New Zealand

    No full text
    Field evidence from a basaltic-andesite dyke preserved in the eroded wall of a scoria cone at Red Crater, Tongariro volcano, New Zealand, records a history of up-conduit magma flow during a Strombolian eruption, subsequent drain-back and final cessation of flow. The dyke intrudes pre-Strombolian andesite lavas, and the overlying proximal basaltic-andesite scoria deposits associated with contemporaneous lavas, which are, in turn overlain by laminated lapilli-tuff and large blocks. Textural and kinematic evidence of ductile shear recorded in basaltic andesite at the dyke margins records magma deformation imposed by bypassing movement of magma up the centre of the conduit during the eruption, whereas the basaltic andesite occupying the central part of the lowermost exposures of the dyke preserves ductile flow-folds with the opposite (down-flow) shear sense. The evidence indicates that the downward magma flow followed the eruption, and this draining left the central part of the dyke empty (unfilled) at uppermost levels. We discuss the kinematic constraints in the context of the criteria for up-flow of mafic magma and present the factors most likely to result in a final drain-back event. With reference to experimental and numerical work, we propose a draining model for the end of this eruption, and that magmatic drain-back may feature commonly during closing stages of Strombolian eruptions at mafic volcanoes. Drain-back which leaves large cavities in a volcanic edifice could result in hazardous structural instabilities

    Disclosing the temperature of columnar jointing in lavas

    Get PDF
    Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation

    Conduit margin heating and deformation during the AD 1886 basaltic Plinian eruption at Tarawera volcano, New Zealand

    Get PDF
    During explosive eruptions, a suspension of gas and pyroclasts rises rapidly within a conduit. Here, we have analysed textures preserved in the walls of a pyroclastic feeder dyke of the AD 1886 Tarawera basaltic Plinian fissure eruption. The samples examined consist of basaltic ash and scoria plastered onto a conduit wall of a coherent rhyolite dome and a welded rhyolitic dome breccia. We examine the textural evidence for the response of the wall material, built of ∌75 vol.% glass and ∌25 vol.% crystals (pore-free equivalent), to mass movement in the adjacent conduit. In the rhyolitic wall material, we quantify the orientation and aspect ratio of biotite crystals as strain markers of simple shear deformation, and interpret juxtaposed regions of vesiculation and vesicle collapse as evidence of conduit wall heating. Systematic changes occur close to the margin: (1) porosity is highly variable, with areas locally vesiculated or densified, (2) biotite crystals are oriented with their long axis parallel to the margin, (3) the biotites have greater aspect ratios close to the margin and (4) the biotite crystals are fractured. We interpret the biotite phenocryst deformation to result from crystal fracture, rotation and cleavage-parallel bookcase translation. These textural observations are inferred to indicate mechanical coupling between the hot gas-ash jet and the conduit wall and reheating of wall rock rhyolite. We couple these observations with a simple 1D conductive heating model to show what minimum temperature the conduit wall needs to reach in order to achieve a temperature above the glass transition throughout the texturally-defined deformed zone. We propose that conduit wall heating and resulting deformation influences conduit margin outgassing and may enhance the intensity of such large basaltic eruptions
    corecore