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Abstract 

Volcanic environments often represent structurally active settings where strain localisation can 

promote faulting, frictional deformation, and subsequent melting along fault planes. Such frictional 

melting is thermodynamically a disequilibrium process initiated by selective melting of individual 

mineral phases and softening of volcanic glass at its glass transition as a response to rapid frictional 

heating. The formation of a thin melt layer on a fault plane surface can drastically accelerate or 

terminate slip during fault motion. A comprehensive understanding of the physical and chemical 

properties of the frictional melt is required for a full assessment of slip mechanism, as frictional 

rheology depends on the contributions from selectively melted mineral and glass phases as well as the 

physical effects of restite fragments suspended in the frictional melt. Here, we experimentally 

investigate the impact of host-rock mineralogy on the compositional and textural evolution of a 

frictional melt during slip. High-velocity rotary shear (HVR) experiments were performed under 

controlled, volcanically relevant, coseismic conditions (1 m s
-1

 slip rate and 1 MPa normal stress) 

using three intermediate dome lavas with contrasting mineral assemblages, sampled from volcanic 
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systems where fault friction is evident: (1) an amphibole-bearing andesite (Soufrière Hills Volcano, 

Montserrat); (2) an amphibole-poor dacite (Santiaguito dome complex, Guatemala); and (3) an 

amphibole-free andesite (Volcán de Colima, Mexico). For each sample, five HVR experiments were 

terminated at different stages of frictional melt evolution, namely: (1) at the onset of melting and (2) 

formation of a steady-state melt layer; and (3) after 5 m, (4) 10 m, and (5) 15 m of slip at steady-state 

conditions. Progressive mixing and homogenisation of selective, single-phase melts within the 

frictional melt layer through double-diffusion convection demonstrates the dependence of melt 

composition on slip behaviour. Amphiboles melted preferentially, leading to lower shear stress (~1 

MPa) and pronounced shear weakening during the frictional melting of amphibole-bearing lavas. The 

results highlight the implications of mineral assemblage on volcanic conduit flow processes, which 

may influence the explosivity of eruptions, and run-out distances of rapid granular flows.  

Keywords: Amphibole; Chemical homogenisation; Faulting; Frictional melt; Viscosity; Volcano 

 

1. Introduction 

1.1. Frictional melting 

Frictional melting is a highly dynamic and chemically chaotic phenomenon associated with 

coseismic faulting and slip as a manifestation of extreme strain localisation (e.g., Sibson, 1975; Allen, 

1979; Magloughlin and Spray, 1992; O'Hara, 1992). The presence of a thin melt layer on a narrow 

slip plane—commonly inferred to be generated at strain-rates > 10
−2

 s
−1

 and slip velocities > 0.1 m 

s
−1

—is an important control on slip properties (Spray, 1992). The generation of such melts is a 

thermomechanical response to energy dissipation associated with the conversion of friction-induced 

deformation to heat (i.e., frictional heating). This process often results in a quasi-linear melt layer that 

is preserved in the geologic record as a pseudotachylyte, providing kinematic evidence for coseismic 

faulting activity (e.g., Shand, 1916; Francis, 1972; Sibson, 1975; Di Toro et al., 2006). 

Experimental work has demonstrated the mechanical influence of frictional melting on slip 

dynamics in geological materials (e.g., Lin and Shimamoto, 1998; Hirose and Shimamoto, 2005; Di 

Toro et al., 2006; Niemeijer et al., 2011; Kendrick et al., 2014b; Hornby et al., 2015). These studies 

have highlighted that the evolution of a frictional melt with slip displacement can dictate a material’s 
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frictional behaviour. Frictional melts can act as either (1) a lubricant, drastically reducing the 

frictional resistance during slip (e.g., McKenzie and Brune, 1972; Tsutsumi and Shimamoto, 1997), or 

(2) a viscous brake, causing slip velocity to wane and seismic slip to terminate (e.g., Koizumi et al., 

2004; Kendrick et al., 2014b).  

The physical properties of the host material (e.g., surface interface roughness; Nielsen et al., 

2010; Harbord et al., 2017) and its constituent minerals (e.g., melting point and shear strength; Spray, 

1992) influence the progression of frictional melting. Owing to rapid heating during fault slip—

several hundred degrees over a few seconds of slip (e.g., McKenzie and Brune, 1972; Lavallée et al., 

2012; Kendrick et al., 2014b; Hornby et al., 2015)—frictional melting is considered a non-equilibrium 

adiabatic process involving the selective melting of individual mineral phases in the order of their 

solidus temperatures (e.g., Scott and Drever, 1953; Sibson, 1975; Spray, 1992; Lin and Shimamoto, 

1998). In particular, the presence of hydrous phases (e.g., phyllosilicates, amphiboles) can 

significantly enhance melting probability owing to their lower melting points and the associated 

release of H2O (Allen, 1979).  

The geochemical signatures of natural pseudotachylytes and experimentally-derived frictional 

melts demonstrate their derivation from selective melting of the host material (Magloughlin, 1992; 

O'Hara, 1992; Spray, 1992; Hetzel et al., 1996; Lavallée et al., 2012; Jiang et al., 2015). Furthermore, 

it has been proposed that the compositional evolution of frictional melts may be used to constrain 

source properties and slip duration (Jiang et al., 2015), but a systematic experimental and geochemical 

approach has yet to be undertaken. 

The shear resistance exerted by frictional melts during slip is strongly influenced by their 

rheological properties (i.e., viscosity and strain-rate; e.g., Hirose and Shimamoto, 2005; Lavallée et 

al., 2012; Hornby et al., 2015). Work on the viscosities of multicomponent silicate melts has resulted 

in a statistically robust dataset over a wide compositional range, all displaying strong non-Arrhenian 

temperature-dependence and highlighting chemical composition, temperature and strain-rate as key 

controls on rheology (Hess and Dingwell, 1996; Giordano et al., 2008). During frictional melting, 

only phases with melting temperatures higher than the formation temperature of the melt can survive, 

leaving a suspension of remnant crystals. Substantial work has demonstrated the influence of 
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suspended crystals on non-Newtonian viscosity and parameterisations have been generated (e.g., 

Caricchi et al., 2007; Costa et al., 2009; Cimarelli et al., 2011; Lavallée et al., 2012; Mader et al., 

2013). 

 

1.2. Fault friction in volcanic environments 

Volcanic systems display abundant evidence for fault activity. For example, faulting can take 

place during the ascent of high-temperature, high-viscosity magma within the shallow volcanic 

conduit (e.g., Tuffen and Dingwell, 2005; Hale and Wadge, 2008; Kendrick et al., 2012; Lavallée et 

al., 2013; Wallace et al., 2019); flank instabilities, sector collapses and landslides (e.g., Legros et al., 

2000; Bernard and de Vries, 2017); and block collision and sliding in pyroclastic density currents 

(e.g., Grunewald et al., 2000; Schwarzkopf et al., 2001). In each scenario, the process of frictional 

melting is material dependent; thus, magmas with different mineralogical assemblages may have 

adverse effects on the style of slip and subsequent hazards generated. Differences in mineral 

assemblages are expected between volcanic systems, although similar differences can be observed 

within the same system owing to natural heterogeneities or the dynamic nature of the plumbing 

system. In particular, intermediate volcanic systems can naturally evolve (both continuously and 

discontinuously) with regards to mineralogy and crystallinity, either reflecting long-term magmatic 

evolution, magma recharge, or changes in final ascent conditions (e.g., Murphy et al., 2000; Scott et 

al., 2013). Previous studies have reported that the introduction of hydrous phases into the plumbing 

system, attributed to an elevated magma-water content at depth, often coincides with an increase in 

explosivity (e.g., Volcán de Colima, Mexico, Luhr and Carmichael, 1990; Macias et al., 2017). Thus, 

the question arises as to the importance of the mineral assemblage for frictional properties in volcanic 

systems. 

A complication that arises in the generation of a frictional melt from volcanic rocks is the 

common presence of a glass phase (e.g., Violay et al., 2014; Lavallée et al., 2015b). Unlike crystalline 

phases, which must melt to generate a liquid phase, glass exhibits a thermo-kinetic barrier, known as 

the glass transition temperature (Tg), where the glass softens into a liquid without any significant 

latent heat of reaction (Dingwell and Webb, 1989). The glass transition temperature increases with 
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heating rate due to the timescales available for structural relaxation, which imposes important controls 

on fault friction (Lavallée et al., 2015b). For a degassed rhyolitic interstitial glass, common in 

intermediate extrusive rocks, Tg is typically < 800 ºC at moderate heating rates (e.g., < 10 ºC /min), 

which is lower than the melting points of the minerals of its crystalline equivalent. Thus, friction with 

low heating rates will enable viscous remobilisation of glass at temperatures far lower than mineral 

melting temperatures, and therefore earlier than mineral melting itself (e.g., Lavallée et al., 2015b). 

However, during rapid frictional heating, Tg may be encountered at higher temperatures (e.g., 

~1000 ºC; Lavallée et al., 2015b) and closer to that of crystal melting temperatures. 

Here, we experimentally assess the impact of mineralogy during the frictional melting of 

intermediate volcanic lavas on the evolutionary dynamics of slip. We highlight the importance of bulk 

mineralogy on fault properties during shallow-conduit and post-eruptive volcanic processes in high-

viscosity systems (e.g., lava domes), which are as yet unaccounted for in current hazard models. A 

better understanding of frictional melts in systems with contrasting mineralogical assemblages will 

improve models for fault slip rheology and magma flow in the conduit, which in turn will aid 

forecasts of magma behaviour during ascent and the interpretation of early warning geophysical 

signals. It may also elucidate fault propagation processes at the base of rapid granular flows and help 

constrain run-out distances during such hazardous events. 

 

2. Materials and methods 

2.1. Starting material 

Three crystal-rich, glass-bearing, intermediate dome lavas from well-characterised, active 

volcanic systems were chosen for this study: (1) an amphibole-bearing andesite from Soufrière Hills 

Volcano (SHV), Montserrat; (2) an amphibole-poor dacite from the Santiaguito dome complex (SG), 

Guatemala; and (3) an amphibole-free andesite from Volcán de Colima (COL), Mexico. Both SHV 

and COL andesites were collected from dome collapse deposits, while the SG dacite formed part of a 

lava spine extruded from the El Monje vent. The starting materials where chosen because they are 

from active volcanic systems renowned for rheological and structural instability, and because they 

cover a range of mineral assemblages found in intermediate lavas (andesite–dacite). 
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The whole-rock geochemistry of each rock sample was determined by X-ray Fluorescence 

Spectrometry (XRF) on a PANalytical Axios Advanced XRF spectrometer at the University of 

Leicester. Major elements were measured on glass beads fused from ignited powders, and trace 

elements were measured using pressed powder pellets (Table 1). Relative precision and accuracy were 

better than 1.5% for major elements and 5% for trace elements based on repeat analyses of 

international reference materials (see Electronic Annex). Mineral abundance statistics were collected 

using QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscope) on an 

automated SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectrometer) system 

equipped with two Bruker energy dispersive X-ray spectrometers. QEMSCAN formulates a chemical 

composition from the X-ray point spectra collected in a raster across a sample and then matches the 

chemistry to a customisable reference library containing known compositions for minerals and glasses 

(for more details see, e.g., Gottlieb et al., 2000). Data were collected across an entire polished, 

carbon-coated thin section from each starting material using a 15 kV accelerating voltage, 5 nA beam 

current, 10 m step size, and dwell time sufficient to collect enough X-ray counts for accurate phase 

identification (defined as 1,000 X-ray counts). The resulting data were combined to produce a false-

colour phase distribution map where each colour represents a compositionally discrete phase. Each 

coloured pixel was summed and normalised on a pore-free basis to provide a quantitative comparison 

of the mineral modal abundances of each starting material (Table 2). Despite precision errors from 

removing and reinserting the same thin section, standard deviations were better than 0.39 for all 

phases. QEMSCAN identification is limited to phases larger than the beam’s interaction volume (~10 

µm
3
); groundmass phases smaller than this cannot be identified individually but are assigned the 

composition of the surroundings (e.g., crystals less than ~2 µm in diameter surrounded by glass). 

Consequently, groundmass mineralogy and interstitial glass were quantified separately from point 

counts of > 1000 points in a 200 × 200 m area per sample. 

 

2.2. Experimental procedure 
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Frictional melting experiments were performed using a high-velocity rotary shear (HVR) 

apparatus at the Kochi Core Centre in Japan. Each experiment involved the preparation of two 24.98 

mm diameter plane-parallel cylindrical cores with a 9 mm hollow centre, which created an ~8 mm 

wide annulus to minimise variations in slip rate across the contact surface. The two cores were placed 

into the experimental apparatus with one core being held stationary and the other rotating. The 

stationary sample holder was attached to a hydraulic piston that was used to apply a controlled axial 

stress of 1 MPa, while the other rotated at a constant (coseismic relevant) slip rate of 1 m s
−1

. See 

Hirose and Shimamoto (2005) for more details of the experimental apparatus. These slip conditions 

were chosen because they represent realistic estimates for those reported during faulting events, such 

as at active lava domes (e.g., Johnson et al., 2008; Hornby et al., 2015; Lavallée et al., 2015a), while 

also providing an ideal timeframe for frictional melting to allow the assessment of melting 

progression at different stages of slip. For each of the three starting materials, a set of five 

experiments was performed, with experiments terminated at five different conditions: (1) the onset of 

melting (Tm); (2) immediately after the achievement of steady-state conditions (Tss); (3) after 5 m of 

slip at steady-state conditions (T5); (4) after 10 m of slip at steady-state conditions (T10); and (5) after 

15 m of slip at steady-state melting conditions (T15). All T15 experiments were performed first to act 

as an initial gauge for the shorter slip distance experiments; however, visual monitoring was always 

used to identify the onset of melting. Steady-state conditions were defined as the attainment of a near-

constant value of shear stress and the beginning of sample shortening. All experiments were recorded 

using an optical camera to track the frictional melting process and correlate it with the mechanical 

data. At the end of each test, the two cores were welded together by a frictional melt layer. Post-

experimental samples were thin-sectioned perpendicular to the slip surface for textural and chemical 

analysis. 

 

2.3. Textural & chemical characterisation  

2.3.1. Scanning electron microscopy & electron probe microanalysis 

Microtextural and geochemical analyses were performed on polished, carbon coated thin 

sections for each experiment. Textural assessment of the frictional melt zone was performed using 
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backscattered electron images (BSE) taken on a Philips XL30 scanning electron microscope (SEM) at 

the University of Liverpool, operated with a 20 kV accelerating voltage, 5 μm spot size and a 10 m 

working distance. 

The compositions of the different phases present in the starting material (host-rock crystals 

and interstitial glass), the experimentally generated frictional melt, and any non-melted crystals 

suspended within the melt zone were determined using a Cameca SX100 electron probe 

microanalyser (EPMA) at the Ludwig Maximilian University of Munich. Elemental abundances were 

acquired using wavelength dispersive spectrometers (WDS). Analyses on crystals were performed 

using a 15 kV accelerating voltage, 20 nA beam current, and a focused (~1 m) beam. For all glass 

measurements, a defocussed 10 m beam was used with a 5 nA beam current. A peak count time of 

10 seconds and background count times of 5 seconds were used for all elements, with Na peaks 

counted first to minimise alkali loss during analysis. Matrix corrections were performed using the 

PAP procedure (Pouchou and Pichoir, 1984). To ensure accuracy and precision eight working 

standards from the Smithsonian collection were utilised throughout the analysis. The full list of 

reference materials, their measured and known compositions, and detection limits, along with the 

standards used for calibration of the spectrometers, can be found in the Electronic Annex. All 

standards were measured regularly to ensure quality. Reproducibility of all elements in the working 

standards was high, with standard deviations < 0.5. By comparing the measured quantities with the 

known reference values for each standard, relative accuracies were generally better than 3% for major 

elements and 20% for minor elements based on multiple repeat analyses. Frictional melt compositions 

were measured as single points and transects across the width of the slip zone, making sure to avoid 

remnant crystals. Any melt totals outside 97–102 wt.% were cross-checked with BSE images and 

discarded in case of beam interaction with crystal fragments. 

 

2.3.2. Synchrotron X-ray spectroscopy 

Prior to EPMA, selected major and trace elements of the frictional melt were analysed by 

high-brightness, micron-scale X-ray spectroscopy using the I18 microfocus spectroscopy beamline at 
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the Diamond Light Source synchrotron, UK. Element maps were produced with a 4 × 3 m spatial 

resolution allowing detailed investigation of the extent of frictional melt homogeneity and to 

investigate mineral susceptibility to contribute to the melt composition. A solid-state detector system 

enabled the analysis of nine elements per map, of which the focus was on the concentrations of Ca, 

Fe, K, Ti, Mn, Rb, Sr, Y, and Zr. These elements were chosen because of their different diffusion 

coefficients and different concentrations in the phases (i.e., minerals and glass), making their 

distinction straightforward. 

 

2.4. Frictional melt rheology 

The non-Arrhenian Newtonian temperature-dependence of frictional melt viscosity was 

estimated using the GRD viscosity model (Giordano et al., 2008). For the viscosity-temperature 

model, frictional melt compositions obtained by EMPA were imported into the calculator, along with 

a 0.1 wt.% H2O and zero fluorine content. These latter values were assumed based on the low water 

contents expected upon eruption, plus the absence of hydrous phases in the SG dacite and COL 

andesite (Harford et al., 2003; Reubi and Blundy, 2008; Savov et al., 2008). However, the presence of 

hydrous amphibole in the SHV andesite makes water content during frictional melting a variable, in 

addition to fluorine, which can often substitute for hydroxyl (OH

). Although fluorine concentration 

in SHV amphiboles is reportedly low (0.04–0.06 wt.%; Humphreys et al., 2009), it was demonstrated 

that this element has a similar viscosity reduction effect as water with the tendency to remain 

dissolved within the melt for longer (Giordano et al., 2004). Thus, for simplicity, we assessed the 

impact of H2O content on SHV frictional melt viscosity. 

Apparent viscosities for the frictional melts were calculated using the recorded mechanical 

data from the experiments as: 

      
 

  
 (1) 

where   is the recorded shear stress (in Pa) taken when slip behaviour reached a steady-state condition 

(i.e., shear stress attained a quasi-constant value), and    is the strain-rate (in s
-1

). Strain-rates      were 

calculated as: 
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 (2) 

where De is the circumference of the circular trajectory at a given radius (referred to as an equivalent 

diameter), d is assumed to reflect the thickness of the melt zone (in mm) as measured by optical 

analysis, and t is slip duration (in seconds). The De was calculated as: 

    
  

  
 (3) 

where R is the rotation rate (in min
-1

) and Ve is the equivalent rotation velocity (i.e., displacement rate; 

in mm per min
-1

). The Ve is defined as such that τVe S gives the rate of total frictional work on a fault 

with area S, assuming a constant shear stress on the fault surface after Shimamoto and Tsutsumi 

(1994): 

    
      

         
  

      
 (4) 

where Do and Di are the outer and inner diameters (in mm), respectively, of the hollow core sample. 

Crystals that remain in the frictional melt may also influence melt viscosity (e.g., Caricchi et 

al., 2007). This effect was estimated using the empirical relative-viscosity calculator of Costa et al. 

(2009) based on a strain-rate dependence rheology model combined with fitting parameters solved 

experimentally by Caricchi et al. (2007). For input values, a maximum packing fraction of 0.55 was 

used based on the semi-equant crystal population (Mueller et al., 2011) and a crystal fraction 

estimated from ImageJ (Schneider et al., 2012) using BSE images of the frictional melt. The relative 

effect of crystals was added to the calculated temperature-dependence of viscosity for the 

homogenised frictional melts to produce a modelled apparent viscosity of the suspension. 

 

3. Results 

3.1. Characterisation of the starting material 

All three starting materials were crystal-rich, porphyritic, and compositionally intermediate 

lavas (Fig. 1; Table 1; Table 2). The sample from Soufrière Hills Volcano (SHV) was andesitic (59.6 

wt.% SiO2; Fig. 1a, b) and consisted of large phenocrysts of calcic-amphibole (i.e., hornblende; 9 

vol.%; up to 6 mm), plagioclase (38 vol.%; up to 2 mm), orthopyroxene (5 vol.%; up to 2.5 mm), and 
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minor clinopyroxene, quartz, and Fe-Ti oxides. The groundmass (Fig. 1d) was highly crystalline and 

consisted of plagioclase (27 vol.%), pyroxene (17 vol.%), and minor Fe-Ti oxide microlites (3 vol.%). 

Silica-rich phases (~5 µm diameter), with characteristic fish-scale cracks (likely cristobalite, a typical 

byproduct of glass devitrification in SHV lavas; e.g., Horwell et al., 2013), formed the second most 

abundant groundmass phase (23 vol.%), while an interstitial rhyolitic glass was located between the 

microlite phases (19 vol.%). 

The sample from the Santiaguito dome complex (SG) was dacitic (64.4 wt.% SiO2; Fig. 1d, e) 

and had a similar porphyritic texture (phenocryst size and shape) to that of the SHV andesite (39 

vol.% plagioclase and 3 vol.% orthopyroxene); however, amphibole was rare (~1 vol.%). Again, 

plagioclase microlites dominated the groundmass (39 vol.%; Fig. 1f), along with less abundant 

pyroxene (3 vol.%), Fe-Ti oxides (~1 vol.%), and a silica-rich phase (~10 µm diameter; likely 

tridymite, as reported for early Santiaguito lavas; e.g., Rose, 1972). These microlites were situated 

within an unaltered and abundant interstitial rhyolitic glass (46 vol.%). 

The sample from Volcán de Colima (COL) was andesitic (62.1 wt.% SiO2; Fig. 1g, h) and 

consisted of plagioclase phenocrysts that were more abundant (47 vol.%) and tabular (length up to 3 

mm) than those in the SHV and SG samples. Both orthopyroxene (6 vol.%) and clinopyroxene (2 

vol.%) were present as phenocryst phases (both up to 800 m), in addition to rare quartz and Fe-Ti 

oxides. Rare, single olivine crystals were also present in the COL andesite, but owing to their 

infrequent appearance they were unlikely to influence frictional melting processes. Plagioclase 

dominated the groundmass mineralogy (30 vol.%; Fig. 1i) along with a pristine interstitial rhyolitic 

glass (62 vol.%), and minor pyroxene (4 vol.%) and Fe-Ti oxides (2 vol.%). Minor silica phases (2 

vol.%) were occasionally located at the edges of plagioclase microlites.  

 

3.2. Mechanical behaviour of high-velocity frictional melts 

During HVR experiments, frictional melts formed on the slip plane surfaces (Fig. 2a). The 

slip properties of the three sample sets evolved differently (Fig. 2b); mechanical data for all 

experiments are displayed in the Electronic Annex (Fig. A1–A3). The frictional properties of the SHV 

andesite were characterised by a sudden increase in shear stress within the first metre of slip. As slip 
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progressed, the shear stress plateaued at 0.50 MPa for ~2 m before it strengthened to a maximum 

stress of 1.34 MPa at ~10 m of total slip, which coincided with incandescence along the fault contact. 

This was followed by the growth of melt patches, which eventually coalesced to form a molten zone 

that extended across the entire slip plane (Tm). Upon the formation of a continuous melt layer (at ~10 

m of total slip), the SHV andesite exhibited a weakening phase that resulted in a decay of the shear 

stress of 0.46 MPa (from 1.34 MPa to 0.88 MPa). Further slip was characterised by the shear stress 

sustaining a steady-state value of 0.88 MPa until the experiment was stopped (from Tss to T15). 

Concurrent with steady-state conditions, continuous axial shortening of the sample at a constant rate 

of 0.12 mm/s (or 7.2 mm/m) was recorded and resulted in a total shortening of 1.4 mm after T15. 

The COL andesite and SG dacite showed similar frictional behaviours, despite their 

differences in bulk-rock composition, and contrasted with the behaviour of the SHV andesite. Both 

samples displayed an abrupt increase in shear stress during the first few metres of slip, which 

plateaued at ~0.50 MPa. Shear stress then oscillated around this value for ~9 m before strengthening 

to a maximum (1.83 MPa for SG and 2.00 MPa for COL) at ~15 m of total slip. Simultaneously, 

incandescence initiated and melt patches grew, approximately 5 m later than with SHV andesite, 

which eventually connected to form a single melt layer at ~12 m of total slip (Tm). With increased slip 

distance (> 15 m), both SG and COL samples experienced only minor shear-weakening (0.13 and 

0.29 MPa, respectively) and remained at a similar steady-state condition of ~1.70 MPa from Tss to T15. 

Steady-state frictional melting was accompanied by continuous axial shortening at a rate of 0.45 mm/s 

(or 27 mm/min) for both SG and COL samples, almost four times faster than for the SHV andesite, 

which resulted in a total shortening of 5.3 and 5.5 mm after T15, respectively. For all experiments, the 

distance and time to the onset of melting varied owing to natural heterogeneities in the lava samples 

(Fig. 2c; Fig. A1–A3); thus, for textural and chemical analysis, each frictional melt was normalised 

with respect to the onset of melting (i.e., Tm = 0 m and 0 s) to allow direct comparison across sample 

sets. 

 

3.3. Microtextural evolution 
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SHV andesite produced the thinnest melt zones (0.1–0.4 mm thick), while SG dacite and 

COL andesite generated thicker frictional melts (0.2–1.0 mm thick). At the onset of melting (Tm), the 

frictional melts exhibited ultra-fine broken crystals (< 5 m) suspended within a melt that quenched to 

a glass after the experiment was stopped (Fig. 3). These crystal fragments were mineralogically the 

same as those recorded in the host-rock, except for amphibole, an abundant phase in the SHV 

andesite, which was not found as a remnant crystal within the entire melt zone. BSE images of the 

melt zones at Tm showed subtle grey-scale heterogeneities in the frictional melt phase (Fig. 3). For 

frictional melts that reached steady-state (Tss), the number of finely suspended clasts had reduced 

while the melt fraction had increased (Fig. 3). Larger crystal fragments (up to 40 µm in diameter), 

primarily plagioclase, also became more isolated within the melt. From 5 m of steady-state slip 

onwards (T5–T15), all frictional melt zones contained large (up to 80 µm) relic plagioclase fragments 

that were equant with rounded edges. Partially resorbed rims around these fragments were also a 

characteristic feature (Fig. 3 T10 and T15). Furthermore, the silica-rich phases observed in the host 

groundmass of the SHV andesite and SG dacite appear undisturbed in the frictional melts, with their 

original shape and surficial textures remaining unaltered. 

All melt layers contained circular and evenly distributed micro-bubbles, although their sizes 

and number densities were dependent on the host material involved. The SHV melts displayed 

consistently large and abundant bubbles that increased in size with slip distance (from < 5 to 14 m 

diameter). SG and COL melts showed fewer and smaller bubbles (< 5 m diameter) with little 

systematic variation with slip distance. The irregular voids observed in the melt zones (Fig. 3) likely 

reflect an artefact of plucked crystals due to sample polishing and should not be mistaken for vesicles. 

 

3.4. Frictional melt compositional variability 

The SiO2 concentration in the SHV frictional melts ranged from 54.5 wt.% to 72.3 wt.% (Fig. 

4a), while the compositions of the SG (Fig. 4b) and COL (Fig. 4c) frictional melts were more 

restricted (60.3–72.4 wt.% and 59.5–66.6 wt.%, respectively). Similarly, the ranges in MgO and FeO 

were 3–4 times larger in the SHV melts compared with the SG and COL melts. For all frictional 
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melts, their composition evolved as slip distance increased, although the style of chemical progression 

showed a dependence on the starting material. For both the SG and COL melts, as slip distance 

increased from Tm to T15, the variability in melt composition decreased and eventually approached a 

near-homogeneous equivalent to its bulk-rock composition. Discrepancies between melt composition 

and the bulk-rock composition were expected, owing to incomplete melting of crystalline fragments 

(Fig. 3). In contrast, the SHV melts became increasingly mafic with time, as reflected by a 

progressive increase in FeO and MgO. Although compositional discrepancies existed for all frictional 

melts, binary plots defined a quasi-linear pattern depending on the element oxide (Fig. 4). Some 

element oxide pairs displayed a strong linear relationship (e.g., SHV FeO vs. MgO, SG SiO2 vs. 

Al2O3), with compositions located along a classic mixing line between host-rock plagioclase and 

interstitial glass, while others showed a larger degree of variability away from this trend (e.g., SHV 

SiO2 vs. Al2O3, SHV and SG Al2O3 vs. Na2O). Transects perpendicular to the melt zone were also 

analysed for compositional variability (Fig. A4). These transects recorded a similar trend to that 

observed in the binary plots, although the higher spatial resolution provided more detail of the extent 

of melt heterogeneity within a localised area and how it evolved with slip distance. All chemical 

transects revealed homogenisation towards the bulk-rock composition from Tm to T15. However, only 

in the SHV melt zones that went beyond Tss did the melt composition deviate from that of the bulk-

rock, while SG and COL melts maintained a composition close to the precursor material. 

Evaluating compositional variations through time required careful consideration of all the 

different components present within the system, as their diffusivities can vary greatly. The standard 

deviations of concentration across the melt zone for each major element oxide showed an exponential 

decrease with slip distance (Fig. 5). For each starting material, a similar systematic ordering of the 

decay curves was observed, with SiO2 and Al2O3 showing the largest variability (Fig. 5a, b). This 

ordering roughly correlated to relative diffusivities of the measured components. The melt derived 

from the SHV andesite showed the largest standard deviations throughout, with the most homogenous 

melt compositions at T15 being comparable to those at Tm for SG dacite and COL andesite (Fig. 5a–f). 

 

3.5. Crystal-melt interaction 
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Areas of interest for electron probe microanalysis (EPMA) and high-resolution synchrotron 

X-ray spectroscopy were selected, where each phase was in direct contact with the melt zone, to 

investigate its susceptibility to breakdown and incorporation in the melt zone. Where amphibole 

crystals were found adjacent to the SHV melt zone, the frictional melt was often twice as thick as 

anywhere else along the slip plane (Fig. 6a). Texturally, amphibole-melt contacts were transitional 

(Fig. 6b), exhibiting: (1) an intact amphibole phenocryst; (2) a partially embayed amphibole, with 

increased embayment towards the melt zone; and (3) a fully formed frictional melt zone. An EPMA 

transect across this contact region revealed the direct transfer of amphibole components to the melt, 

which resulted in a quasi-linear gradational trend for major components (Fig. 6c). Components that 

are low in concentration in amphiboles (e.g., Na2O) showed only minor influence on melt 

composition. Element maps along the amphibole-melt contact also depicted the contribution of key 

elements to frictional melt composition (Fig. 6d and Fig. A5); in particular, the adjacent melts were 

enriched with Ca, Fe, and Y, along with minor Ti and Mn. Although K, Sr, Rb, and Zr are 

incompatible in amphibole, they were still detected in the melt. Fe-Ti oxide crystals in the melt zones 

appeared less affected by the high temperatures, although they often showed a subtle halo of Ti-rich 

melt (Fig. 6d).  

In contrast to the amphibole-melt relationship, when plagioclase phenocrysts were in contact 

with the melt zones no embayment textures were observed (Fig. 6a); in these areas, the melt layers 

were often the thinnest (< 50 µm; Fig. A6). Plagioclase is similarly abundant in Ca as other phases in 

the host materials (e.g., amphibole and clinopyroxene), yet its high Sr compatibility allows easy 

detection and makes its involvement in frictional melt composition distinct. X-ray spectroscopy maps 

revealed that SG and COL frictional melts were all notably enriched in Sr (Fig. 7 and A7), although 

the SHV melts were all relatively Sr poor (Fig. 6, A5 and A6). Augite (clinopyroxene) and 

hypersthene (orthopyroxene) were the dominant pyroxene phases in all three host materials (see 

Electronic Annex). Although pyroxenes are generally similar in composition to amphiboles, they are 

importantly anhydrous and lacked resorption textures when in contact with the melt zone (Fig. A6 and 

A7). In these areas, SG and COL frictional melts were noticeably lower in Ca and Fe and overall less 

compositionally heterogeneous compared with the SHV melts. Within the SG and COL melts, the 
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contribution of interstitial glass was identified by the high concentration of K, along with zones that 

showed elevated concentrations of Rb and Zr (Fig. 7 and A7). However, K, Rb, and Zr were low in 

concentration in the SHV melts (Fig. 6 and Fig. A5). 

Mass balance mineral contributions to each frictional melt composition were calculated by 

applying the adapted least squares petrological mixing program MINSQ (Herrmann and Berry, 2002), 

using the compositions of host-rock minerals, interstitial glass, and frictional melts from EPMA. 

Given that the chemical compositions of these phases were expressed as weight percentage of element 

oxides, modal phase proportions were also calculated as weight percentages. Weight percentages were 

converted to volume percentages for comparison with measured abundances in the host-rock using the 

following phase densities (g cm
-3

): amphibole = 3.2, plagioclase = 2.7, clinopyroxene = 3.3, 

orthopyroxene = 3.5, Fe-oxide = 5.2, quartz (for Si-phases) = 2.6 and glass = 2.4. In the least squares 

calculations, frictional melt compositions from each experiment were used as the target composition 

and the host-rock minerals and interstitial glass as the contributing phases. Figure 8 shows the major 

contributing phases for the entire range of compositions measured in each sample suite and how their 

abundance evolved with slip distance. From these results, calcic-amphibole (hornblende) was shown 

to be a key component of the SHV melt composition, with the measured melts estimated to have a 0–

27 vol.% amphibole contribution (Fig. 8a). At the early stages of melting (Tm–Tss), an average of 6–7 

vol.% amphibole was estimated to contribute to the frictional melt composition, but after steady-state 

melting was achieved, up to 27 vol.% amphibole was incorporated into the melt, consistent with the 

evolution observed in the binary plots (Fig. 4a). Plagioclase dominated the frictional melt modal 

compositions in all samples (Fig. 8b), albeit underrepresented relative to the bulk mineralogy. There 

was a general decrease in plagioclase abundance and variability with slip distance, which averaged 

between 43 and 50 vol.% at T15 for each starting material. Interstitial glass was the second-most 

influential phase on melt composition, which appeared to be overrepresented relative to the bulk-rock 

(Fig. 8c). Similar to plagioclase, the contribution range of interstitial glass to melt composition 

became less variable with slip distance; however, the evolutionary trends between the three sample 

sets were different. SHV melts showed an average decrease in glass contribution with slip distance 

(from 43 to 35 vol.%), while the proportions of glass in both SG and COL melts increased (from 31 to 
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44 vol.% and 31 to 36 vol.%, respectively). All frictional melts showed an increase in orthopyroxene 

(hypersthene) melting with slip distance (Fig. 8d), although SG and COL melts were 

underrepresented compared with the bulk. Clinopyroxene (augite) had only a minor involvement in 

the compositions of the SHV and SG melts; however, the COL melts showed a more significant 

clinopyroxene contribution (Fig. 8e), consistent with its occurrence as large phenocrysts in the COL 

andesite. Fe-Ti oxides represented a minor component of all melt compositions, yet still revealed a 

subtle increase with slip distance (Fig. 8f).  

The same least squares model was employed to approximate a theoretical proportion of 

phases required to further melt and incorporate with the frictional melts to obtain the bulk-rock 

composition. The measured fraction of homogenised frictional melt (quantified using BSE images) 

was combined with the compositions of crystal fragments remaining in the melt zone to obtain the 

following: 

                                                                                               (5) 

                                                                              (6) 

                                                                             (7) 

These estimated phase proportions were consistent with observations seen in BSE images of the melt 

zone at T15 (Fig. 3). 

 

3.6. Rheological response of frictional melt 

Silicate melt viscosity is primarily determined by chemical composition. Frictional melt 

viscosities were estimated using the empirical equation of Giordano et al. (2008). Owing to the large 

compositional heterogeneities for melts formed between Tm and Tss, obtaining a single value for melt 

viscosity for these melts is challenging. However, the more homogenous melt compositions at T15 

formed the closest to an equilibrium state, which permitted a more robust approximation for the 

temperature-dependence of viscosity.  

Figure 9a–c displays the temperature-viscosity relationships for the homogenised frictional 

melts for each starting material, plus felsic and mafic melt filaments formed at the onset of melting 

which act as viscosity end-members. For comparison, viscosities were also calculated for the 
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interstitial glass and molten bulk-rock. The relative effect of solid particles suspended in the melt 

(estimated using Costa et al., 2009) was added to the temperature-dependence of melt viscosity 

derived from Giordano et al. (2008) to model its apparent viscosity. For the homogenised frictional 

melts at T15 derived from SHV, COL, and SG samples, the presence of crystals added 0.92, 0.63, and 

0.36 orders of magnitude of [Pa s] to the viscosity, respectively (Table 3). Through calculating an 

apparent viscosity derived from the mechanical data (Eq. 1) and comparing these values to the 

modelled temperature-dependent viscosity curves for each sample (Fig. 9a–c), estimates of the 

temperature range for the frictional melts during steady-state slip were obtained. The SHV melts had 

an estimated viscosity range of 1.95–2.17 [log Pa s] across a wide temperature range from 1270 ºC 

(for a crystal-free melt) to 1510 ºC (if the melt contained up to 45 vol.% crystal suspensions; Table 3). 

SG and COL melts revealed overlapping viscosity ranges (of 2.33–2.54 and 2.41–2.73 [log Pa s], 

respectively), which were consistently higher than the SHV melts. However, estimated temperatures 

for both SG and COL melts differed significantly from 1400 ºC to 1510 ºC and 1280 ºC to 1440 ºC, 

respectively. It is important to note that these viscosities, and thus temperature ranges, could be a 

slight overestimate owing to the possible underestimation of the melt zone thickness (as required for 

strain-rate calculations; Eq. 2). Figure 9d shows the effect of increasing water content on the 

temperature-dependent modelled apparent viscosity of the homogenised SHV frictional melt 

suspension. It demonstrates that if the SHV melts contained water, the modelled apparent viscosities 

would be lower; thus, the SHV melt zones would require a lower temperature to achieve the apparent 

viscosities measured using the mechanical data (Eq. 1).  

 

4. Discussion 

4.1. Mechanisms driving frictional melting of volcanic rocks 

Amongst the many studies that exist on tribological instabilities, dynamic fault slip events are 

typically described using a rate- and state-dependent friction law (e.g., Dieterich, 1979; Rice et al., 

2001; Ohmura and Kawamura, 2007; Popov et al., 2012). Previous experimental investigations on the 

frictional properties of igneous, metamorphic, and sedimentary rocks have highlighted their dynamic 

evolution with increasing displacement, a consequence of thermal instabilities brought about by 
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frictional heating and subsequent melting (e.g., Tsutsumi and Shimamoto, 1997; Hirose and 

Shimamoto, 2005; Di Toro et al., 2011; Niemeijer et al., 2011; Chen et al., 2017; Lockner et al., 

2017). Furthermore, the frictional behaviour of both intrusive and extrusive igneous rocks at 

coseismic slip rates (> 0.1 m s
−1

) has been shown to inherit complex transient regimes in the form of 

both shear-weakening and strengthening (e.g., Tsutsumi and Shimamoto, 1997; Hirose and 

Shimamoto, 2005; Kendrick et al., 2014b; Hornby et al., 2015; Chen et al., 2017). Analogous to these 

reports, the frictional behaviour of the three mineralogically contrasting lavas in the present study can 

be divided into three discrete stages: (1) an initial steady-state regime; (2) a shear-strengthening 

regime; and (3) a final shear-weakening to steady-state slip regime. The timing and intensity of each 

of these stages was material dependent. The SHV andesite experienced only a minor stage 1, lasting 

just 1–2 m of slip, whereas SG dacite and COL andesite spent ~10 m at this stage. The transition to 

stage 2 was similar in all cases, although SG and COL samples continued to strengthen to a higher 

peak stress and underwent only minor shear weakening during stage 3. In contrast, the SHV andesite 

reached a lower shear stress and experienced a more distinct shear-weakening step during stage 3. 

These observations were similar to previous studies of volcanic rocks, with their differences in slip 

properties attributed to a contrast in mineral assemblage and the presence of an interstitial glass 

(Kendrick et al., 2014b). The work of Spray (1992) highlighted the significance of a host material’s 

constituent minerals on frictional properties. Accordingly, a hierarchy of frictional melting 

susceptibility for a range of common rock-forming minerals was constructed, taking into account their 

shear strength, fracture toughness and most importantly melting point. Applying this hierarchy to the 

individual phases of the three lavas in this study, the theoretical order of phases preferentially affected 

during frictional sliding would be rhyolitic glass (Tg = 740–770 ºC, estimated using Giordano et al. 

(2008) as a viscosity gauge for 10
12

 Pa s; Fig. 9a–c), calcic-amphibole (hornblende; ~750–1000 ºC), 

plagioclase (An40–An90; ~1280–1500 ºC), clinopyroxene (augite; ~1400 ºC), orthopyroxene 

(hypersthene; ~1425 ºC), Fe-Ti oxides (~1600 ºC), and Si-polymorphs (SiO2; ~1700 ºC). However, 

due to the fast heating rates involved during frictional heating and melting, the Tg for the rhyolitic 

interstitial glass may be higher than the melting temperature of amphibole. 
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The marked increase in shear stress at the onset of friction is attributed to the initial 

interaction of asperities on the slip surfaces, which led to subsequent comminution of the host-rock 

and likely coincided with minor plucking of minerals. In the SHV andesite, amphibole was the 

mineral most susceptible to grain size reduction owing to its lower fracture toughness and yield 

strength (Spray, 1992); for SG and COL samples, the mechanically weakest mineral was plagioclase 

(Spray, 1992). Additionally, the high abundance of silica phases in the groundmass of the SHV 

andesite (due to glass devitrification) likely had more of a physical effect at the early stages of slip 

than an unaltered glass. This micromechanical response resulted in the formation of a cataclastic 

gouge layer on the contact surface (e.g., Hetzel et al., 1996; Spagnuolo et al., 2016), which acted as a 

lubricant and permitted minor shear weakening that led to near steady-state shear stress within the 

first few metres of slip (e.g., Reches and Lockner, 2010; Lavallée et al., 2014). Frictional heating 

caused an abrupt shear strengthening attributed to volumetric expansion of the sample (as seen in the 

shortening data; Fig. 2b) and the first production of a melt on the slip plane. The preferential melting 

of ultra-fine crystal fragments, owing to their larger surface area (Spray, 1992), generated molten 

patches on the slip surface (Tsutsumi and Shimamoto, 1997; Hirose and Shimamoto, 2005; Chen et 

al., 2017). These melt patches behaved as a preliminary viscous brake and caused the shear stress to 

rise to a maximum (Tsutsumi and Shimamoto, 1997; Fialko and Khazan, 2005; Hirose and 

Shimamoto, 2005). Owing to the ubiquitous occurrence of amphibole in the SHV andesite, this 

process took place ~5 m (5 s) earlier than in the experiments with the SG dacite and COL andesite. 

This shorter slip distance required to generate melt could be related to a higher rate of comminution 

followed by the preferential melting of the amphibole fraction. It has also been postulated that the 

release of water from the melting of hydrous phases could facilitate this stage (e.g., Allen, 1979; 

Hetzel et al., 1996). As the temperature increased concurrently with shear stress, melt patches began 

to coalesce upon increased melting, resulting in a molten layer with abundant crystal fragments, as 

seen at the onset of melting (Tm; Fig. 3). With further melting, a fully formed frictional melt separated 

the two sliding surfaces, owing to an increase in the volume of melt to crystals, until a critical melt 

fraction is reached (Fialko and Khazan, 2005; Rosenberg and Handy, 2005; Chen et al., 2017). 

Thickening of the molten layer accompanied by increased melting caused a decrease in shear stress 
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towards a steady-state condition (e.g., Tsutsumi and Shimamoto, 1997), which increased the distance 

between the two opposing interfaces (referred to as the Stefan problem; e.g., Hirose and Shimamoto, 

2005). At this stage, slip behaviour was dependent on the viscosity of the melt, which in turn was 

influenced by the strain-rate in the slip zone. The SHV andesite showed a larger shear weakening 

response (0.46 MPa) compared with SG dacite (0.13 MPa) and COL andesite (0.29 MPa), which 

matched the variation in estimated frictional melt viscosities for each material (Fig. 9; Table 3). From 

this stage on, the ability of the slip zone to sustain a molten layer was determined by the heat 

produced by shear heating rather than solid friction (Hirose and Shimamoto, 2005). Microstructural 

evidence of a reduction in finer crystal fragments upon steady-state melting confirmed this (Fig. 3), 

suggesting that intense comminution was no longer in action. Steady-state conditions were marked by 

a sudden increase in melt production as maximum temperatures were reached. Here, comminution 

was replaced by tearing of crystals along the slip interface. Consequently, large angular crystal 

fragments, derived from the host material, became isolated within the molten layer (from Tss onwards; 

Fig. 3) and their outer edges subsequently became rounded owing to combined attrition and melting 

(Lin, 1999), a characteristic feature of natural pseudotachylytes (e.g., Sibson, 1975). Melting of the 

outer edges of plagioclase fragments generated the resorbed rim textures (Fig. 3), which demonstrated 

that these fragments were subjected to temperatures exceeding their equilibrium conditions. The 

thickening of the melt zone and change in shape of the rock-melt interface towards steady-state 

conditions was an important characteristic that likely altered the roughness of the fault plane and 

affected the frictional properties (i.e., flow rheology). Such a change in melt-surface topography was 

most noticeably brought about by the interaction of amphibole crystals with the melt zone (Fig. 6a). 

Amphibole embayment along with a consistently thicker melt zone adjacent to amphibole crystals 

provided evidence for its selective melting (e.g., Spray, 1992). Similar textures have been related to 

the Gibbs-Thomson effect (Hirose and Shimamoto, 2003), by which the local melting temperature of 

a mineral’s external surface—when in contact with the melt zone—is reduced. In contrast, plagioclase 

crystals showed less textural evidence for melting, which corresponds to a thinner melt layer when 

plagioclase phenocrysts are adjacent to the slip zone (Fig. 6 and Fig. A6). The variation in final melt 

thickness between each sample set corresponded to the amount of shortening experienced during the 
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experimental run (Fig. 2b). However, it is possible that the melt thickness measured may not be fully 

representative because the melt zone may have been compressed slightly after the experiment ceased, 

while a normal stress (1 MPa) was still being applied. 

 

4.2. Selective phase melting and preferential melting of amphibole 

Frictional melting has long been portrayed as a disequilibrium selective mineral melting 

process (Shimamoto and Lin, 1994; Lin and Shimamoto, 1998), yet the influence of discrete phases 

on the mechanics of frictional melt production during faulting remains an area that is not fully 

constrained (e.g., Jiang et al., 2015). Here, we relate mechanical and compositional progression of 

frictional melting to the presence or absence of amphibole in the host material. Although interstitial 

glass was more abundant in the SG dacite and COL andesite than in the SHV andesite, it was likely to 

have a secondary role on the mechanical properties when amphibole was present; this may be a 

consequence of the high heating rates involved, limiting the timescale of structural relaxation of the 

glass, and possibly resulted in Tg being higher than the melting point of amphibole (e.g., Dingwell and 

Webb, 1989; Lavallée et al., 2015b). Previous HVR experiments on the frictional melting of andesites 

and dacites that were both glass-rich and amphibole-rich (e.g., Kendrick et al., 2014b; Hornby et al., 

2015) recorded similar mechanical behaviours to the SHV andesite in this study, supporting the 

theory that hydrous minerals have a primary control on frictional behaviour. The absence of 

amphibole fragments hosted within the SHV frictional melt supports the disequilibrium melting 

model of Spray (1992), where amphibole has the lowest melting point; other studies also reported the 

lack of ferromagnesian hydrous fragments in experimental melts and natural pseudotachylytes (e.g., 

Scott and Drever, 1953; Sibson, 1975; Hetzel et al., 1996; Hirose and Shimamoto, 2005; Jiang et al., 

2015). The composition of the melts can thus be related to the chemical components that were derived 

from melting of the different host-rock phases, as revealed by the least squares model (Fig. 8).  

All melt compositions showed a near-linear relationship between the composition of the 

interstitial glass and plagioclase (Fig. 4), suggesting that these two phases were influential in the 

melting process. However, a deviation from this trend may have come from either a combination of 

contrasting mobilities of different chemical elements, referred to as diffusive fractionation (e.g., 
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Perugini et al., 2006; Morgavi et al., 2013; Perugini et al., 2013), or  the interaction of mafic minerals 

(e.g., amphiboles, pyroxenes, and Fe-Ti oxides). The high level of Sr in the SG and COL frictional 

melts confirms the dominance of plagioclase melting. Additionally, the elevated K, Rb, and Zr in 

these melts demonstrates melting of the interstitial glass was integral during frictional melting of SG 

dacite and COL andesite; this is consistent with the higher abundance of K-rich interstitial glass in 

their host material. A low concentration of K, Sr, Rb, and Zr in the SHV frictional melts suggests 

melting of plagioclase and glass was more limited, consistent with less interstitial glass in the host 

material, as the preferential melting of amphibole proceeded. Interestingly, the compositions of the 

SHV melt at the onset of melting showed only minor amphibole influence based on lower 

ferromagnesian components (Fig. 4); this is supported by the least squares model (Fig. 8a). This lack 

of amphibole contribution was likely due to the absence of amphibole phenocrysts adjacent to or on 

the slip plane. With slip progression, an overall increase in FeO, MgO, and CaO, along with a slight 

decrease in Al2O3, suggests an increased amphibole contribution, which also corresponds to the 

increase in bubble content. Homogenisation towards the host’s bulk composition, which has been 

proposed previously (e.g., Spray, 1992; Hirose and Shimamoto, 2005), appeared to be the case upon 

steady-state melting (Tss) due to increased mixing efficiency. However, owing to preferential 

amphibole melting in the SHV andesite, the melt composition became more mafic with time. This 

contrasts with the interpretation of Jiang et al. (2015), who suggested that melts will become 

progressively more felsic with time if hydrous phases are present. An increased amphibole input was 

likely the result of the conduction of heat through the sample. High temperatures would have initiated 

along the fault plane, which would only allow phases exposed to the contact surface to melt (i.e., 

plagioclase and glass). However, as melting progressed, a strong thermal gradient between the melt 

zone and the host-rock surface likely formed (e.g., Nielsen et al., 2008). Consequently, any heat being 

transferred through the host’s wall may have been limited to a small distance from the interface where 

temperatures may not have been high enough to melt most minerals that were directly adjacent to the 

melt zone. However, owing to amphiboles having a significantly lower melting temperature compared 

with the other phases (750–1000 ºC; Spray, 1992), these minerals were likely still affected even if 

temperatures were several hundreds of degrees lower than in the melt zone interior. The textures 
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observed in Figure 6b confirm this, where amphibole began to melt ~200 µm away from the melt 

zone. A similar effect has been observed on landslide slip surfaces, in which minerals directly beneath 

the fault plane had thermally decomposed owing to frictional heating (Hu et al., 2018). It is also 

possible that mafic melt filaments that formed at the onset of melting could have been compromised 

owing to rapid diffusion related to low viscosities (e.g., Rossi et al., 2017), unlike more felsic 

filaments with higher viscosities; this may further explain the apparent lack of amphibole signature at 

the onset. However, the mafic trend with slip progression opens a potential case for amphibole-

bearing rocks not being able to (or required to) produce frictional melt temperatures high enough for 

efficient bulk melting, creating a feedback that encourages mafic compositions. 

Compositional trends for the SG and COL melts fit the expected evolution towards 

homogeneity and bulk-rock composition with increasing slip distance. Although these melts initially 

had a hybridised composition between plagioclase and interstitial glass, an increase in FeO and MgO 

with time confirms the melting of pyroxenes. The lack of a CaO trend for these melts suggests the 

contribution of orthopyroxene to frictional melt composition dominated over clinopyroxene, which 

corresponds to the relative modal fractions in the host materials. Although clinopyroxene (augite) and 

orthopyroxene (hypersthene) have similar estimated melting temperatures (~1400 ºC and ~1425 ºC, 

respectively), orthopyroxene generally has a lower yield strength and shear strength (Spray, 1992), 

which may have favoured faster comminution and subsequent melting from the onset of slip. The 

presence of silica phases suspended in the SHV and SG frictional melts (derived from the host’s 

groundmass; Fig. 3) confirms the higher temperatures required to melt them (> 1700 ºC). However, 

mass balance calculations for the SG frictional melt suggest that some melt filaments required up to 

28 vol.% of a pure silica phase to obtain its composition. From the temperature-viscosity model (Fig. 

9), estimated temperatures of the molten layer rarely exceeded 1500 ºC. However, Lee et al. (2017) 

showed that the melting temperature of quartz could be suppressed by > 200 ºC owing to preferential 

melting of finer quartz fractions and conversion to a meta-stable -quartz, referred to as quasi-

equilibrium melting. 

 

4.3. Chaotic mixing and chemical homogenisation during frictional melting 
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The evolution of frictional melt composition during the progressive melting of chemically 

discrete phases is governed by a dynamic chaotic mixing phenomenon, akin to magma mixing (e.g., 

Perugini et al., 2003; De Campos et al., 2011). In recent years, chaotic mixing between mafic and 

felsic silicate melts has been constrained experimentally to assess the timescales of chemical 

homogenisation during magma mixing events (e.g., Morgavi et al., 2013; Perugini et al., 2013; Rossi 

et al., 2017). The diffusivities of the different major elements alone would not permit the chemical 

exchanges observed over the timescales of frictional melting in our experiments (< 20 s); thus, 

physical mixing must play a fundamental role. At the onset of melting (Tm), the formation of melt 

filaments within the molten layer generated compositional gradients; owing to shearing, these 

filaments began to stretch and fold, which increased the surface area to enhance chemical diffusion. 

Owing to different element diffusivities, this may have caused a diffusive fractionation resulting in 

melts with a hybridised composition (Perugini et al., 2006; Perugini et al., 2008; Perugini et al., 

2013). In a simple case, the mixing of two melts (with one component) should form linear trends in 

binary plots (e.g., Fourcade and Allègre, 1981). However, owing to the fractal distribution of melt 

filaments and a frictional melt consisting of more than two end-members with multiple components, a 

non-linear trend between elements exists (Fig. 4), which highlights the complexity involved during 

chemical mixing of a frictional melt. Consequently, discriminating the effect of diffusive fractionation 

and the range of chemical filaments involved is a challenging task. 

Gradational melt filaments observed in BSE images of the frictional melts (Fig. 3 Tm) likely 

represent local areas of immiscibility and incomplete mixing of the different melted phases (termed 

schlieren). The various compositions of these different filaments suggest that viscosity contrasts 

would exist within a frictional melt. These viscosity contrasts would have a significant influence on 

melt filament mixing efficiency (e.g., Sparks and Marshall, 1986), with a larger viscosity contrast 

taking more time to mix and homogenise (e.g., Morgavi et al., 2013). The large viscosity contrasts 

expected between amphibole, plagioclase, and interstitial glass filaments could explain the more 

heterogeneous nature of the SHV melts (Fig. 4a). The smaller viscosity contrasts between plagioclase 

and glass in the SG and COL melts would aid a faster rate of homogenisation (Fig. 4b, c). Owing to 

density variations brought about by varying chemical compositions of the melt filaments, mixing 
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during frictional melting can be described as a form of double-diffusion convection, where convection 

is forced by filaments with juxtaposing diffusivities (Huppert and Sparks, 1984; Hirose and 

Shimamoto, 2005). In summary, we highlight the complexity involved when attempting to assess 

chaotic mixing of a frictional melt due to selective phase melting. 

 

4.4. Rheology 

As discussed, the dynamic physicochemical complexity of a frictional melt brings about a 

convoluted rheological response. It has been well documented that the viscosity of the growing 

molten layer between two sliding surfaces determined the shear resistance of a melt during slip (e.g., 

Hirose and Shimamoto, 2005). Consequently, it is the viscosity dependence that determines whether a 

frictional melt will serve as a lubricant or brake (e.g., Koizumi et al., 2004; Hirose and Shimamoto, 

2005; Kendrick et al., 2014b). The mafic trend observed in the SHV frictional melts suggests a likely 

decrease in melt viscosity with slip distance owing to increased amphibole-melt interaction. Heat 

transfer to the wall rock adjacent to the melt layer can result in a continuous injection of low-viscosity 

amphibole melt causing the viscosity to be dynamic. However, the more homogenising response of 

the SG and COL melts suggests a more constant viscosity with time. This response may be the cause 

for the instantaneous transition from peak shear stress to steady-state with little weakening involved 

(Fig. 2b); this was in contrast to the SHV melt, which showed a clear weakening phase before steady-

state conditions were achieved. 

The presence of crystals and bubbles within a frictional melt can influence the apparent 

viscosity (Lavallée et al., 2012; Hornby et al., 2015). Crystals in all the frictional melts increase shear 

resistance by adding between 0.36 and 0.97 Pa s to the apparent viscosity causing increased strain-rate 

dependence (Fig. 9a–c). However, bubbles may either increase apparent viscosity or have an opposite 

effect depending on whether the bubbles can resist deformation or deform viscously, respectively 

(e.g., Bagdassarov and Dingwell, 1992). As highlighted by Lavallée et al. (2012), the low estimated 

viscosities of the frictional melt imply that bubbles should deform, lowering the apparent viscosity. 

Yet, bubbles showed no signs of deformation (Fig. 3). Undeformed bubbles were previously given as 

evidence for their formation at the end of sliding (Hirose and Shimamoto, 2005). However, circular 
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bubbles more likely reflect the relaxation of a low viscosity melt that was dominated by highly 

isotropic surface tension which bring the bubbles back to spherical once shearing has ceased (Rust 

and Manga, 2002). The increase in bubble content with slip distance in the SHV melt is attributed to 

elevated water contents due to increasing input from amphibole melt. With amphibole containing ~2 

wt.% H2O in its structure, a contribution of 27 vol.% amphibole melt (Fig. 8a) may have resulted in 

up to 0.54 wt.% H2O being transferred to the frictional melt, and thus lowered the modelled apparent 

viscosity and lowered the estimated temperatures of the SHV melt zone by ~100 ºC (Fig. 9d). 

The apparent viscosity of the frictional melt suspension is strain-rate dependent and results in 

dynamic slip mechanics. In nature, slip rates are rarely constant. Based on the non-Newtonian nature 

of silicate melts (e.g., Webb and Dingwell, 1990), a decrease in slip velocity would result in a reduced 

strain-rate causing an increase in apparent viscosity. This may manifest as a rise in shear stress that 

exceeds the structural relaxation of the melt causing slip to terminate. The slip zone may subsequently 

heal and then reactivate following the accumulation of shear stress, resulting in a stick-slip motion 

(e.g., Koizumi et al., 2004; Kendrick et al., 2014b; Lavallée et al., 2015b; Lockner et al., 2017). 

Consequently, we infer that host materials bearing a similar mineral assemblage to SG dacite and 

COL andesite are more likely to form frictional melts that operate as a viscous brake during 

deceleration of fault slip. On the other hand, in materials bearing a high abundance of hydrous 

minerals, similar to the SHV andesite, frictional melts would lubricate slip even during deceleration.   

 

5. Implications for volcanic settings 

During the ascent of high-temperature, high-viscosity magma, common during dome-building 

eruptions, strain localisation along the conduit margins can result in the development of shear zones 

that experience seismogenic failure as magma encounters the viscous-brittle transition (e.g., Neuberg 

et al., 2006; De Angelis and Henton, 2011; Kendrick et al., 2014a). High strain-rates in these regions 

can lead to frictional melting along the faulted contact and, consequently, dictate ascent dynamics and 

influence the style of activity at the surface (Kendrick et al., 2014a). 

At Santiaguito dome complex (Guatemala), regular gas-and-ash explosions have been 

attributed to strain localisation and friction during piston-like faulting of a lava plug at the conduit 
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margins due to rapid uplift of the dome, corresponding to a slip velocity of up to 1 m s
−1

 (Johnson et 

al., 2008). Evidence of frictional melting was recorded by the presence of melt filaments in erupted 

ash fragments and frictional marks on blocks forming the dome carapace (Lavallée et al., 2015a). In 

addition to explosive activity, Hornby et al. (2015) reported that frictional melting was a likely 

process during repetitive slip of an emerging lava spine at Unzen volcano (Japan) following an 

experimental investigation. The study coupled high-velocity rotary shear experiments with seismic 

signals recorded during spine growth and constrained a slip velocity of 0.75 m s
-1

. Shear zones that 

developed at the margins of the lava spine during its extrusion record extensive petrological evidence 

for localised frictional deformation and subsequent heating (Wallace et al., 2019). 

The difficulty we face when identifying pseudotachylytes in volcanic conduits is the high and 

sustained ambient temperatures (> 500 ºC) which promote slow cooling, crystallisation, hydrothermal 

alteration, and the metastability of glass. Such post-melting alteration processes can result in 

chemical, textural, and geophysical overprints that make it difficult to decipher the conditions of 

frictional melting (e.g., Kendrick et al., 2012; Kirkpatrick and Rowe, 2013). 

Fluxes in the abundance of mineral phases have been observed in many volcanic systems, 

particularly hydrous phases that are attributed to the injection of hydrous magma. Volcán de Colima 

has experienced such events, where an increased abundance of amphibole was recorded in products 

erupted in 1818 and from 1869 to 1913. This has been labelled as a potential precursor of explosive 

activity (Luhr and Carmichael, 1990; Luhr, 2002; Savov et al., 2008; Saucedo et al., 2010). We 

suggest that the introduction of amphibole could play a fundamental role in altering flow dynamics in 

the upper conduit by reducing the shear resistance during slip and facilitating explosive behaviour. 

This is because a lubricating effect could enable a continuous, fast magma ascent in the conduit where 

less shear resistance takes place near conduit margins. As amphibole-derived frictional melts are less 

likely to act as viscous brakes during a deceleration in magma ascent rate, they may be less prone to 

generate permeable fractures. Additionally, our observations that lavas containing amphibole generate 

frictional melts faster than amphibole-free lavas suggest amphibole-bearing systems are more 

susceptible to frictional melting. Consequently, the rapid formation of frictional melts in amphibole-

bearing systems following short slip events may help seal fault planes that subsequently heal, thus 
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decreasing the permeability of the system. Both these mechanisms promote higher gas overpressures 

and greater explosivity. If the magma is amphibole-free, frictional melts are less likely to form during 

very short slip events, and even during prolonged slip frictional melts are more likely to fail and 

fracture, leading to a pulsatory magma ascent in a stick-slip motion. Thus, frictional melting in 

amphibole-free systems favours the development of outgassing pathways that relieve the pressure of 

the system and reduce the explosive potential. However, for hydrous phases to control frictional 

behaviour, their abundances would likely need to be above a critical fraction to ensure continuous 

interaction during frictional melting.  

Additionally, rapid granular flows due to collapse events (e.g., landslides, pyroclastic flows, 

block-and-ash flows) in materials’ bearing hydrous minerals could facilitate propagation processes, by 

decreasing the frictional resistance and thereby increasing the velocity of the flow and its travel 

distance. Frictional marks on block exteriors from block-and-ash flow deposits have highlighted the 

highly energetic internal processes taking place within rapid granular flows, where blocks 

continuously collide and slide past each other (e.g., Grunewald et al., 2000; Schwarzkopf et al., 2001). 

An investigation of frictional marks found on amphibole-bearing andesitic blocks from Soufrière Hills 

Volcano (SHV) identified thin pseudotachylyte veins that were compositionally heterogeneous, with 

SiO2 ranging from 53 to 63.5 wt.% (Grunewald et al., 2000). The pseudotachylyte glass composition 

had no overlap with that of the bulk-rock composition and was attributed to matrix melting rather than 

bulk melting of the host andesite. However, from our findings using a similar andesite from SHV, we 

suggest pure matrix melting was unlikely and these pseudotachylyte-bearing frictional marks 

represented very short-lived slip where only the onset of selective phase melting took place rather 

than prolonged slip to achieve a composition comparable to that of the bulk precursor rock. Contrary 

to the work of Grunewald et al. (2000), Schwarzkopf et al. (2001) performed a similar chemical 

analysis on frictional marks imprinted on the surface of andesitic–basaltic-andesite blocks from a 

block-and-ash flow deposit from Merapi volcano (Indonesia), classifying pseudotachylyte formation 

as a response to flash melting of the entire rock following frictional contact. This interpretation was 

based on the consistent compositional overlap of the pseudotachylyte and bulk-rock. From the 

experiments performed here, the different compositional relationships between the blocks from SHV 
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and Merapi volcano could be explained by either prolonged sliding of blocks at Merapi (several 

metres of slip to allow the melt to homogenise towards the bulk-rock composition), prolonged 

incursion to high temperatures (to favour bulk melting), or a different mineral assemblage. Sustained 

slip between blocks in a block-and-ash flow is highly unlikely owing to the short-lived, chaotic 

collisions of rotating blocks; thus, we relate these previously assessed chemical observations to their 

contrasting bulk mineral assemblages, primarily the high abundance of amphibole in the SHV 

andesite. We thus anticipate our experimental and geochemical findings will also contribute to the 

improvement of flow models of similar rapid granular flows, including basal faulting during volcanic 

avalanches (e.g., Legros et al., 2000; Bernard and de Vries, 2017). 

 

6. Conclusions 

We have experimentally demonstrated the effect of contrasting mineral assemblages on the 

frictional properties of extrusive volcanic rocks, providing a chemical viewpoint to a physical process. 

We find that the compositional discrepancies in frictional melts are attributed to selective phase 

melting during faulting, which, in addition to suspended crystal fragments, have a profound influence 

on the rheological properties of the melt, consequently controlling the mechanical response to slip. 

Selective melting preferentially occurs in phases with the lowest melting temperatures and mechanical 

strength, represented by amphibole in the volcanic rocks studied here. In the presence of amphibole, 

frictional melts are chemically and rheologically complex heterogeneous liquids. With time, these 

melts homogenise and evolve simultaneously, moving chemically further away from the bulk-rock 

towards a more mafic composition as amphiboles further from the fault zone continue to melt 

preferentially. Consequently, the lower melt viscosities attributed to preferential amphibole melting, 

likely accompanied by H2O release, facilitate a low shear resistance that promotes slip. When 

amphibole is absent, frictional melts are compositionally more homogenous from the onset and in 

general homogenise continuously towards the bulk composition. In this case, the rheological response 

of the melt is dependent on preferential melting of phases with the next lowest melting temperatures 

and strength (i.e., plagioclase and rhyolitic glass). High modal fractions of these molten phases lead to 

frictional melt compositions that are closer to the bulk-rock. Selective melts of these phases have 
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higher melt viscosities that cause a stronger shear resistance during slip, which may inhibit slip 

progression but eventually led to failure. These findings provide new insights for assessing volcanic 

processes that involve slip displacement, either by altering conduit flow dynamics, which could 

impact the style of an eruption (explosive or effusive), or by contributing to the velocities and run-out 

distances of rapid granular flows. 
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Tables 

 
Table 1: Geochemical compositions of the bulk starting materials (measured by XRF) and interstitial 

glass (measured by electron probe microanalysis). 

 

 

 

All oxide concentrations are normalised averages of n measurements. Values in parentheses are 

standard deviations (1) from n analyses. See Electronic Annex for all measurements. 
$
 Original total 

*
All Fe as FeO  

<lld, below lower limit of detection 

 

  

Location: Soufrière Hills Volcano Santiaguito dome complex Volcán de Colima 
Sample: SHV SG COL 

Rock type: Andesite Dacite Andesite 
Deposit: Dome collapse Lava spine Dome collapse 

 Bulk-rock
 

Glass
 

Bulk-rock
 

Glass
 

Bulk-rock
 

Glass
 

(wt.%) 
 

n 14 
 

n 9 
 

n 19 
SiO2 59.59 79.72 (4.82) 64.44 75.65 (1.38) 62.05 77.00 (0.71) 
TiO2 0.60 0.29 (0.09) 0.42 0.44 (0.05) 0.51 0.56 (0.06) 
Al2O3 18.49 10.93 (2.91) 17.66 12.27 (0.79) 17.74 11.35 (0.38) 
FeO* 6.13 1.32 (0.50) 4.06 1.81 (0.46) 4.58 1.86 (0.11) 
MnO 0.16 <lld 0.14 <lld 0.10 <lld 
MgO 2.74 0.18 (0.26) 1.67 0.30 (0.27) 2.83 0.16 (0.06) 
CaO 7.76 2.20 (1.10) 4.61 0.45 (0.29) 5.59 0.48 (0.13) 
Na2O 3.34 3.23 (0.63) 4.79 3.88 (0.54) 4.48 4.04 (0.22) 
K2O 0.80 1.91 (0.64) 1.70 4.95 (0.34) 1.32 4.27 (0.33) 
P2O5 0.13 <lld 0.21 <lld 0.18 <lld 

Cl - 0.08 (0.04) - 0.11 (0.04) - 0.12 (0.03) 
LOI 0.07 - 0.18 - 0.15 - 

Total
$
 99.81 100.84 99.88 99.32 99.53 99.72 

(ppm) 
 

     
Ba 214 - 805 - 618 - 
Ce 26 - 26 - 30 - 
La 13 - 16 - 11 - 
Nb 3 - 6 - 3 - 
Nd 14 - 16 - 16 - 
Pb 3 - 8 - 6 - 
Rb 17 - 32 - 19 - 
Sc 16 - 8 - 12 - 
Sr 278 - 470 - 601 - 
Th 2 - 2 - 1 - 
V 131 - 53 - 97 - 
Y 24 - 17 - 14 - 
Zn 56 - 73 - 53 - 
Zr 99 - 154 - 124 - 
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Table 2: Quantitative mineral modal abundance for the bulk starting materials and the host 

groundmass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a 
Bulk mineralogy acquired from QEMSCAN 

b 
Groundmass mineralogy determined using point counting 

c 
Combines quartz, cristobalite, and tridymite 

d 
Groundmass pyroxene abundances combines both orthopyroxene and clinopyroxene. 

e 
Connected porosities measured by He-pycnometry using cores from each starting material 

Location: 
Soufrière Hills 

Volcano 
Santiaguito dome 

complex 
Volcán de Colima 

Sample: SHV SG COL 

Rock type: Andesite Dacite Andesite 

Deposit: Dome collapse Lava spine Dome collapse 

(vol.%) 
Bulk-
rock

a Groundmass
b Bulk-

rock
a Groundmass

b Bulk-
rock

a Groundmass
b 

Plagioclase 52.5 27.4 63.9 38.8 67.0 30.0 

Amphibole 9.3 0.0 1.5 0.0 1.1 0.0 

Orthopyroxene 6.4 

16.8d 

2.9 

2.6d 

6.5 

3.8d 

Clinopyroxene 2.3 0.3 1.2 

Si polymorph
c 

13.0 23.2 14.2 11.0 5.6 2.0 

Fe-Ti oxide 1.9 3.4 1.0 1.4 0.8 2.2 

Apatite 0.3 - 0.4 - 0.4 - 

Olivine 0.0 0.0 0.0 0.0 Rare 0.0 

Glass 14.4 19.2 15.9 46.2 17.2 62.0 

Vesicularity 15.2 10.0 7.0 0.0 13.7 0.0 

Porosity (Pyc)
e 

13.0 n.a. 9.0 n.a. 17.0 n.a. 
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Table 3: A summary of the experimental conditions along with mechanical and rheological data measured for each high-velocity rotary shear (HVR) 

experiment: SHV = Soufrière Hills Volcano andesite; COL = Volcán de Colima andesite; SG = Santiaguito dome complex dacite. 

a 
Maximum and steady-state shear stress values are an average of the peak and steady-state portion of the curves in Fig. A1–3, respectively.  

b 
Melt zone thickness estimated from optical images and averaged using multiple transects perpendicular to the slip surface; to ensure accuracy, measurements 

were only taken where melt was is in direct contact with the bulk material on both sides. 

c 
Crystal fractions quantified using SEM-BSE images of the melt. 

d 
Equivalent rotation velocities (Ve) were used to calculate displacement rates (Eq. 4) after Shimamoto and Tsutsumi (1994).  

e 
Strain-rates (  ) were calculated for slip during steady-state conditions (Eq. 2) using an equivalent diameter (De; Eq. 3), melt thickness, and slip duration. 

f 
Relative effect of crystals suspended within the frictional melt on melt viscosities were estimated by applying the method of Costa et al. (2009) and the 

parameterised experimental data of Caricchi et al. (2007), using measured crystal fractions and calculated strain-rate data. 

g 
HVR apparent viscosities were calculated from the mechanical data using Eq. 1 for steady-state conditions.

Experiment 

Max. 
shear 
stress 
(MPa)

a 

Steady-
state 
shear 
stress 
(MPa)

a 

Total slip 
distance 

(m) 

Total 
shortening 

(mm) 

Melt zone 
thickness 

(avg.; mm)
b 

Crystal 
fraction

c RPM 
Outer 

diameter 
(mm) 

Inner 
diameter 

(mm) 

Ve 
(Rotation 
Velocity; 

m s
-1
)
d 

(  ) 

Strain-
rate     
(s

-1
)
e 

Relative 
viscosity 

(Log Pa s)
f 

HVR 
apparent 
viscosity 

(Log Pa s)
g 

SHV Tm 1.08 - 10.8 0.00 0.30 0.32 1043 24.94 9.32 1.00 4.1E+03 0.55 - 

SHV Tss 1.25 0.92 16.7 0.08 0.30 0.30 1044 24.96 9.27 1.00 6.4E+03 0.50 2.16 

SHV T5 1.27 0.88 17.6 0.18 0.30 0.38 1044 24.97 9.29 1.00 6.8E+03 0.72 2.11 

SHV T10 1.24 0.87 25.5 0.46 0.30 0.44 1044 24.96 9.30 1.00 9.8E+03 0.97 1.95 

SHV T15 1.34 0.88 27.2 1.43 0.30 0.43 1044 24.94 9.26 1.00 1.0E+04 0.92 1.93 

COL Tm 1.07 - 9.30 0.01 0.25 0.36 1047 24.97 9.02 1.00 4.3E+03 0.65 - 

COL Tss 1.12 0.73 12.1 0.01 0.55 0.24 1047 24.96 9.13 1.00 2.5E+03 0.36 2.46 

COL T5 1.88 1.50 18.1 1.49 0.55 0.40 1044 24.97 9.25 1.00 3.8E+03 0.79 2.60 

COL T10 2.11 1.68 23.0 3.34 0.55 0.35 1047 24.98 9.19 1.00 4.8E+03 0.63 2.54 

COL T15 2.00 1.70 32.2 5.53 0.50 0.35 1044 24.95 9.20 1.00 7.4E+03 0.63 2.36 

SG Tm 1.30 - 16.0 0.11 0.35 0.20 1046 24.96 9.12 1.00 5.2E+03 0.28 - 

SG Tss 1.89 1.78 21.9 0.29 0.50 0.21 1044 24.99 9.18 1.00 5.0E+03 0.30 2.55 

SG T5 1.78 1.44 21.9 1.05 0.45 0.30 1053 24.83 8.98 1.00 5.5E+03 0.50 2.41 

SG T10 1.90 1.71 27.3 3.39 0.45 0.26 1035 24.96 9.72 1.00 7.0E+03 0.40 2.39 

SG T15 1.91 1.70 31.4 5.22 0.45 0.24 1044 24.94 9.28 1.00 8.0E+03 0.36 2.33 
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Figure captions 

 

Fig. 1: Mineralogical and textural characteristics of the three host materials used in the high-velocity 

rotary shear (HVR) experiments: Soufrière Hills Volcano (SHV) andesite (a–c), Santiaguito dome 

complex (SG) dacite (d–f), and Volcán de Colima (COL) andesite (g–i). Panels (a, d and g) are 

photographs of the cored starting materials, (b, e and h) are QEMSCAN maps used for quantifying 

bulk-rock phase abundances, where colours identify phases as shown in the key and white indicates 

pore space, and (c, f and i) are backscattered electron (BSE) images showing groundmass textures. 

The phases in the groundmass include plagioclase (Pl), pyroxenes (Px), oxides (Ox), silica 

polymorphs (Si), and interstitial glass (Gl). 

 

Fig. 2: Visual and mechanical observations of frictional melt evolution of the Soufrière Hills Volcano 

(SHV) andesite, Santiaguito dome complex (SG) dacite, and Volcán de Colima (COL) andesite. (a) 

Freeze-frames of optical recordings of the simulated fault zone upon stopping the experiment at Tm 

(melting onset), T5 (5 m of slip at steady-state conditions), and T15 (15 m of slip at steady-state 

conditions). The time (t) refers to the total duration of the experiment. (b) Mechanical data showing 

the different slip behaviours of the three starting materials, including evolution in shear stress () and 

experimental sample shortening. Only the mechanical data for T15 experiments are displayed for 

comparison (see Fig. A1–A3 for all data). (c) Timeline displaying different stages of frictional 

melting: onset of melting (Tm), reaching steady-state conditions (Tss), 5 m slip at steady-state (T5), and 

10 m slip at steady-state (T10), with all data derived from the T15 experiment in (b). 

 

Fig. 3: Backscattered electron (BSE) images showing the microtextural evolution of frictional melts 

from the onset of melting (Tm) to 15 m of slip at steady-state conditions (T15) for each starting 

material. The inset text shows the fraction of melt and crystals, along with the percentage porosity of 

the frictional melt layer (pores/bubbles were defined using a >0.8 circularity threshold in imageJ). 

Labelled phases include: plagioclase (Pl), pyroxenes (Px), oxides (Ox), silica polymorphs (Si), and 

interstitial glass (Gl), in addition to bubbles (Bl.) in the melt zone. ‘Rim’ denotes examples of 

partially resorbed crystal edges. 

 

Fig. 4: Binary plots showing the evolution in frictional melt composition for representative major 

element oxides (SiO2, CaO, FeO, MgO, Al2O3, and Na2O) with increasing slip displacement from the 

onset of melting (Tm) to 15 m of steady-state (SS) slip after melting (T15). (a) Soufrière Hills Volcano 

(SHV) andesite, (b) Santiaguito dome complex (SG) dacite, and (c) Volcán de Colima (COL) 

andesite. For comparison, the composition of host-rock plagioclase, interstitial glass, and amphibole 

(for SHV only) are plotted, along with the composition of each bulk starting material.  
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Fig. 5: Standard deviations () of compositional variability for the experimental frictional melts as a 

function of slip distance from the onset of melting (Tm) to 15 m of slip at steady-state conditions (T15) 

for the different major components (a–f). The  for each component decreases with slip duration for 

all starting materials, modelled using an exponential fit of the data. Frictional melts derived from the 

Soufrière Hills Volcano (SHV) andesite have the highest  for all major components, while melts 

from Santiaguito dome complex (SG) dacite and Volcán de Colima (COL) andesite have the lowest. 

 

Fig. 6: Amphibole-melt interaction during frictional melting of the Soufrière Hills Volcano (SHV) 

andesite. (a) Backscattered electron (BSE) image of the frictional melt zone after 15 m of slip at 

steady-state conditions (T15), displaying both an amphibole and plagioclase phenocryst on the right 

side of the melt zone, and groundmass on the left side of the melt zone. (b) BSE image emphasising 

the nature of the contact between the amphibole and the melt zone displaying textural alteration of the 

amphibole. (c) Composition of the frictional melt and amphibole phenocryst along the transect 

labelled by the arrow in (b). (d) Synchrotron X-ray spectroscopy element maps of the amphibole-melt 

contact as shown in (b). 

 

Fig. 7: Synchrotron X-ray element maps of Volcán de Colima (COL) andesite frictional melt after 10 

m of slip at steady-state conditions (T10). The backscattered electron (BSE) image shows the contact 

between the frictional melt and the host-rock groundmass. The element maps are taken from the 

outlined area of the BSE image (red box) and depict the contribution of interstitial glass and other 

groundmass phases to frictional melt composition. Interstitial glass is identified by the highest 

concentrations of K, Rb, and Zr. 

 

Fig. 8: Box plots showing the contribution of the different minerals and glass phases to the frictional 

melt composition calculated using the least squares petrological mixing program MINSQ (Herrmann 

and Berry, 2002). The phases contributing to the frictional melt derived from Soufrière Hills Volcano 

(SHV) andesite, Santiaguito dome complex (SG) dacite, and Volcán de Colima (COL) andesite, 

include: (a) amphibole (hornblende), (b) plagioclase, (c) interstitial glass, (d) orthopyroxene 

(hypersthene), (e) clinopyroxene (augite), and (f) Fe-Ti oxides. All estimated phase abundances are 

compared to the respective abundances of the host rocks. Outliers were detected using the 

interquartile range (IQR) rule.  

 

Fig. 9: Non-Arrhenian temperature dependence of viscosity of the experimental frictional melts. 

Viscosities were calculated using the GRD viscosity model of Giordano et al. (2008) for melts derived 
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from the frictional melting of (a) Soufrière Hills Volcano (SHV) andesite, (b) Santiaguito dome 

complex (SG) dacite, and (c) Volcàn de Colima (COL) andesite. The chemical compositions of the 

frictional melts, derived by electron probe microanalysis, were used as input parameters, including the 

most mafic and felsic melts from the onset of melting (Tm) and the homogenised frictional melts after 

15 m of steady-state slip (T15). The relative effect of crystals on melt viscosity was modelled 

considering crystal fraction and strain-rate following the method of Costa et al. (2009); these relative 

viscosities were added to the homogenised melt curves to produce a modelled apparent viscosity. The 

modelled apparent viscosities of the frictional melt suspensions were compared with the mechanically 

constrained apparent viscosities (Eq. 1; TMonitored), providing an estimated temperature of the frictional 

melt zone (TEstimated). (d) Effect of different water contents on the apparent viscosity of SHV frictional 

melt owing to the presence of hydrous amphibole melting. The red line indicates 0.5 wt.% H2O based 

on 27 vol.% amphibole melting for frictional melts at T15. 

 

Fig. A1: Mechanical data for the five high-velocity rotary shear (HVR) experiments performed on the 

Soufrière Hills Volcano (SHV) andesite. Each panel represents the evolution in frictional properties 

(i.e., shear stress, normal stress and sample shortening) monitored during experiments that were 

terminated at: (a) onset of melting (Tm), (b) formation of full frictional melt and attainment of steady-

state condition (Tss), (c) after 5 m of slip at steady-state conditions (T5), (d) after 10 m of slip at 

steady-state conditions (T10), and (e) after 15 m of slip at steady-state conditions (T15). 

 

Fig. A2: Mechanical data for the five high-velocity rotary shear (HVR) experiments performed on the 

Santiaguito dome complex (SG) dacite. Each panel represents the evolution in frictional properties 

(i.e., shear stress, normal stress and sample shortening) monitored during experiments that were 

terminated at: (a) onset of melting (Tm), (b) formation of full frictional melt and attainment of steady-

state condition (Tss), (c) after 5 m of slip at steady-state conditions (T5), (d) after 10 m of slip at 

steady-state conditions (T10), and (e) after 15 m of slip at steady-state conditions (T15). 

 

Fig. A3: Mechanical data for the five high-velocity rotary shear (HVR) experiments performed on the 

Volcán de Colima (COL) andesite. Each panel represents the evolution in frictional properties (i.e., 

shear stress, normal stress and sample shortening) monitored during experiments that were terminated 

at: (a) onset of melting (Tm), (b) formation of full frictional melt and attainment of steady-state 

condition (Tss), (c) after 5 m of slip at steady-state conditions (T5), (d) after 10 m of slip at steady-state 

conditions (T10), and (e) after 15 m of slip at steady-state conditions (T15). Note that steady-state 

melting in (b) occurred at a shorter slip distance than the onset of melting in (a), which demonstrates 

the natural variability of a single sample. 
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Fig. A4: Major element chemical transects across the experimental melt zone (i.e., perpendicular to 

the slip plane) following melting of the (a) Soufrière Hills Volcano (SHV) andesite, (b) Santiaguito 

dome complex (SG) dacite and (c) Volcán de Colima (COL) andesite at: onset of melting (Tm), 

formation of full frictional melt and attainment of steady-state condition (Tss), and after 5 m (T5), 10 

m (T10), and 15 m of slip at steady-state conditions (T15). The composition of the bulk-rock along with 

averages of the bulk-rock interstitial glass and plagioclase crystals have been labelled for reference. 

 

Fig. A5: Synchrotron X-ray element maps of Soufrière Hills Volcano (SHV) frictional melt formed 

after 5 m of slip at steady-state conditions (T5) displaying the contribution of amphibole to frictional 

melt composition. Elements that are high in concentration in amphiboles include: Ca, Fe and Y; 

amphibole incompatible elements include: K, Sr, Rb, and Zr. 

 

Fig. A6: Synchrotron X-ray element maps of Soufrière Hills Volcano (SHV) frictional melt upon 

reaching steady-state conditions (Tss) displaying the contributions of plagioclase (left of maps) and 

clinopyroxene (augite; right of maps) to frictional melt composition. 

 

Fig. A7: Synchrotron X-ray element maps of Santiaguito dome complex (SG) frictional melt upon 

reaching steady-state conditions (Tss) displaying the contributions of orthopyroxene (OPX, 

hypersthene; top right of map) and interstitial glass (bottom of maps) to frictional melt composition. 
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