126 research outputs found

    Investigation of Adsorbent Characteristics of Carbonized Low-Density Woods in the Treatment of Textile Effluent

    Get PDF
    Textile industries wastewater contains pollutants which vary greatly and depend on the chemicals and treatment processes used. Toxic heavy metals in wastewater are discharged into the environment, which adversely affect human, aquatic life, and natural water bodies. This study was therefore designed to investigate adsorption of heavy metal ions (Cadmium, Zinc, Manganese, Chromium and iron) in raw textile wastewater using activated carbon from Cordia millenii and Gmelina arborea wood species. Carbon structural pattern was examined using SEM equipment. Batch sorption tests were conducted in wastewater treatment by varying absorbent contact time with the sorbate from 30 to 120minutes (at 30minutes intervals) to facilitate attainment of equilibrium condition. The pore space diameter mean values were 9.28±1.22 and 4.45±1.57μm for Cordia millenii Carbon (CMC) and Gmelina arborea Carbon (GAC) respectively. It was observed that over 80% Manganese removal was achieved at 120minutes contact time for both carbons studied. Highest removal efficiencies were observed at all contact times in GAC for iron while in CMC for Chromium, Cadmium, Zinc and Manganese between 30-90minutes contact time. After 120 minutes contact time, there was insignificant difference in removal efficiency for Chromium and Manganese. However, at 30minutes contact time, percentage removal of over 60% was obtained for Manganese, implying that Manganese has high mobility towards the adsorbents surface. The activated carbons obtained from these two wood species are therefore viable options for heavy metal removal from textile effluents

    Identification of markers associated with bacterial blight resistance loci in cowpea (Vigna unguiculata (L.) Walp.)

    Get PDF
    Cowpea bacterial blight (CoBB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is a worldwide major disease of cowpea [Vigna unguiculata (L.) Walp.]. Among different strategies to control the disease including cultural practices, intercropping, application of chemicals, and sowing pathogen-free seeds, planting of cowpea genotypes with resistance to the pathogen would be the most attractive option to the resource poor cowpea farmers in sub-Saharan Africa. Breeding resistance cultivars would be facilitated by marker-assisted selection (MAS). In order to identify loci with effects on resistance to this pathogen and map QTLs controlling resistance to CoBB, eleven cowpea genotypes were screened for resistance to bacterial blight using 2 virulent Xav18 and Xav19 strains isolated from Kano (Nigeria). Two cowpea genotypes Danila and Tvu7778 were identified to contrast in their responses to foliar disease expression following leaf infection with pathogen. A set of recombinant inbred lines (RILs) comprising 113 individuals derived from Danila (resistant parent) and Tvu7778 (susceptible parent) were infected with CoBB using leaf inoculation method. The experiments were conducted under greenhouse conditions (2007 and 2008) and disease severity was visually assessed using a scale where 0 = no disease and 4 = maximum susceptibility with leaf drop. A single nucleotide polymorphism (SNP) genetic map with 282 SNP markers constructed from the same RIL population was used to perform QTL analysis. Using Kruskall-Wallis and Multiple-QTL model of MapQTL 5, three QTLs, CoBB-1, CoBB-2 and CoBB-3 were identified on linkage group LG3, LG5 and LG9 respectively showing that potential resistance candidate genes cosegregated with CoBB resistance phenotypes. Two of the QTLs CoBB-1, CoBB-2 were consistently confirmed in the two experiments accounting for up to 22.1 and to 17.4% respectively for the first and second experiments. Whereas CoBB-3 was only discovered for the first experiment (2007) with less phenotypic variation explained of about 10%. Our results represent a resource for molecular marker development that can be used for marker assisted selection of bacterial blight resistance in cowpe

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Legume breeding and seed systems for improved livelihoods and impact

    Get PDF
    The Tropical Legumes III project aims to reduce food insecurity in drought-prone areas of Sub Saharan Africa (SSA) and South Asia (SA), through improved productivity and production of four major grain legumes – chickpea, common bean, cowpea and groundnut. This is being sone by conducting research under three complementary research and delivery pillars: support for the development and release of farmer-preferred varieties; strengthening of the legume breeding capacity of partner CGIAR centers (ICRISAT, IITA and CIAT), and national partners Burkina Faso, Ghana, Mali, Nigeria, Ethiopia, Tanzania and Uganda; and establishment of sustainable seed delivery systems that service the needs of small-holderfarmers. Significant achievements have been recorded. Breeding program assessments have been completed in all countries and improvement plans developed for execution. New seed varieties (163) have been released and are fast replacing the old ruling seed varieties in all target countries. Thirty seven national partners were trained at MSc and PhD levels. As a result of the enhanced skills and knowledge of seed value chain actors, seed production significantly increased by 221% (from 139,048 to 446,359 tons) in seven years. Since 2007, improved varieties have been adopted on at least 2 million hectares and more than 448millionhasbeengeneratedfromtheprojectfundingandnearly448 million has been generated from the project funding and nearly 976 million from the project and investment partners. For each dollar invested, the project generated 9withdirectprojectinvestmentor9 with direct project investment or 20 with partnership’s investment, and again $20 when using adoption rate based estimate. These achievements and implementation challenges will be discussed

    A SNP and SSR Based Genetic Map of Asparagus Bean (Vigna. unguiculata ssp. sesquipedialis) and Comparison with the Broader Species

    Get PDF
    Asparagus bean (Vigna. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea [Vigna. unguiculata (L.) Walp.] that apparently originated in East Asia and is characterized by extremely long and thin pods and an aggressive climbing growth habit. The crop is widely cultivated throughout Asia for the production of immature pods known as ‘long beans’ or ‘asparagus beans’. While the genome of cowpea ssp. unguiculata has been characterized recently by high-density genetic mapping and partial sequencing, little is known about the genome of asparagus bean. We report here the first genetic map of asparagus bean based on SNP and SSR markers. The current map consists of 375 loci mapped onto 11 linkage groups (LGs), with 191 loci detected by SNP markers and 184 loci by SSR markers. The overall map length is 745 cM, with an average marker distance of 1.98 cM. There are four high marker-density blocks distributed on three LGs and three regions of segregation distortion (SDRs) identified on two other LGs, two of which co-locate in chromosomal regions syntenic to SDRs in soybean. Synteny between asparagus bean and the model legume Lotus. japonica was also established. This work provides the basis for mapping and functional analysis of genes/QTLs of particular interest in asparagus bean, as well as for comparative genomics study of cowpea at the subspecies level

    Exosomes Communicate Protective Messages during Oxidative Stress; Possible Role of Exosomal Shuttle RNA

    Get PDF
    BACKGROUND: Exosomes are small extracellular nanovesicles of endocytic origin that mediate different signals between cells, by surface interactions and by shuttling functional RNA from one cell to another. Exosomes are released by many cells including mast cells, dendritic cells, macrophages, epithelial cells and tumour cells. Exosomes differ compared to their donor cells, not only in size, but also in their RNA, protein and lipid composition. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we show that exosomes, released by mouse mast cells exposed to oxidative stress, differ in their mRNA content. Also, we show that these exosomes can influence the response of other cells to oxidative stress by providing recipient cells with a resistance against oxidative stress, observed as an attenuated loss of cell viability. Furthermore, Affymetrix microarray analysis revealed that the exosomal mRNA content not only differs between exosomes and donor cells, but also between exosomes derived from cells grown under different conditions; oxidative stress and normal conditions. Finally, we also show that exposure to UV-light affects the biological functions associated with exosomes released under oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results argue that the exosomal shuttle of RNA is involved in cell-to-cell communication, by influencing the response of recipient cells to an external stress stimulus

    Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis

    Get PDF
    Abstract Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2–5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis
    corecore