133 research outputs found
Random Variables Recorded under Mutually Exclusive Conditions: Contextuality-by-Default
We present general principles underlying analysis of the dependence of random
variables (outputs) on deterministic conditions (inputs). Random outputs
recorded under mutually exclusive input values are labeled by these values and
considered stochastically unrelated, possessing no joint distribution. An input
that does not directly influence an output creates a context for the latter.
Any constraint imposed on the dependence of random outputs on inputs can be
characterized by considering all possible couplings (joint distributions)
imposed on stochastically unrelated outputs. The target application of these
principles is a quantum mechanical system of entangled particles, with
directions of spin measurements chosen for each particle being inputs and the
spins recorded outputs. The sphere of applicability, however, spans systems
across physical, biological, and behavioral sciences.Comment: In H. Liljenstr\"om (Ed.) Advances in Cognitive Neurodynamics IV (pp.
405-410) (2015
Relational Hidden Variables and Non-Locality
We use a simple relational framework to develop the key notions and results
on hidden variables and non-locality. The extensive literature on these topics
in the foundations of quantum mechanics is couched in terms of probabilistic
models, and properties such as locality and no-signalling are formulated
probabilistically. We show that to a remarkable extent, the main structure of
the theory, through the major No-Go theorems and beyond, survives intact under
the replacement of probability distributions by mere relations.Comment: 42 pages in journal style. To appear in Studia Logic
Unbounded violation of tripartite Bell inequalities
We prove that there are tripartite quantum states (constructed from random
unitaries) that can lead to arbitrarily large violations of Bell inequalities
for dichotomic observables. As a consequence these states can withstand an
arbitrary amount of white noise before they admit a description within a local
hidden variable model. This is in sharp contrast with the bipartite case, where
all violations are bounded by Grothendieck's constant. We will discuss the
possibility of determining the Hilbert space dimension from the obtained
violation and comment on implications for communication complexity theory.
Moreover, we show that the violation obtained from generalized GHZ states is
always bounded so that, in contrast to many other contexts, GHZ states do in
this case not lead to extremal quantum correlations. The results are based on
tools from the theories of operator spaces and tensor norms which we exploit to
prove the existence of bounded but not completely bounded trilinear forms from
commutative C*-algebras.Comment: Substantial changes in the presentation to make the paper more
accessible for a non-specialized reade
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
High non-photonic electron production in + collisions at = 200 GeV
We present the measurement of non-photonic electron production at high
transverse momentum ( 2.5 GeV/) in + collisions at
= 200 GeV using data recorded during 2005 and 2008 by the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC). The measured
cross-sections from the two runs are consistent with each other despite a large
difference in photonic background levels due to different detector
configurations. We compare the measured non-photonic electron cross-sections
with previously published RHIC data and pQCD calculations. Using the relative
contributions of B and D mesons to non-photonic electrons, we determine the
integrated cross sections of electrons () at 3 GeV/10 GeV/ from bottom and charm meson decays to be = 4.0({\rm
stat.})({\rm syst.}) nb and =
6.2({\rm stat.})({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at GeV
We present first measurements of the evolution of the differential transverse
momentum correlation function, {\it C}, with collision centrality in Au+Au
interactions at GeV. {\it C} exhibits a strong dependence
on collision centrality that is qualitatively similar to that of number
correlations previously reported. We use the observed longitudinal broadening
of the near-side peak of {\it C} with increasing centrality to estimate the
ratio of the shear viscosity to entropy density, , of the matter formed
in central Au+Au interactions. We obtain an upper limit estimate of
that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions
We study the beam-energy and system-size dependence of \phi meson production
(using the hadronic decay mode \phi -- K+K-) by comparing the new results from
Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4
and 200 GeV measured in the STAR experiment at RHIC. Data presented are from
mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the
transverse momentum distributions for \phi mesons are observed to be similar in
yield and shape for Cu+Cu and Au+Au colliding systems with similar average
numbers of participating nucleons. The \phi meson yields in nucleus-nucleus
collisions, normalised by the average number of participating nucleons, are
found to be enhanced relative to those from p+p collisions with a different
trend compared to strange baryons. The enhancement for \phi mesons is observed
to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations
for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision
energies, the source of enhancement of strange hadrons is related to the
formation of a dense partonic medium in high energy nucleus-nucleus collisions
and cannot be alone due to canonical suppression of their production in smaller
systems.Comment: 20 pages and 5 figure
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Electron microscopic demonstration of centrifugal nerve fibers in the human optic nerve
Electron microscopic views of centrifugal nerve fibers in the optic nerve stump of a 56-year-old man are presented. These nerve fibers had survived for 16 days after removal of the corresponding eyeball and exhibited terminal swellings pointing in a distal direction and indicating axoplasmic flow towards the removed eye. The centrifugal nerves in this adult lack any evidence of attempted regeneration that has earlier been observed under similar conditions in the optic nerve stump of a child. Zentrifugale (antidrome, efferente) Nervenfasern sind hier zum ersten Mal mit dem Elektronenmikroskop im menschlichen Sehnerven dargestellt worden. Diese Nervenfasern wurden in dem Sehnervenstumpf eines 56jährigen Mannes 16 Tage nach der Entfernung des dazugehörigen Auges gefunden. Endschwellungen dieser Nervenfasern waren distal ausgerichtet und deuteten damit einen Axoplasmafluß in Richtung des entfernten Auges an. Während deutliche Regenerationsversuche an den distalen Enden unterbrochener zentrifugaler Nervenfasern im Sehnervenstumpf eines Kindes früher beobachtet worden sind, fanden sich im Sehnerven dieses Erwachsenen keinerlei Zeichen von Regeneration der zentrifugalen Fasern.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47369/1/417_2004_Article_BF00414787.pd
- …