57 research outputs found

    Understanding the power of the prime minister : structure and agency in models of prime ministerial power

    Get PDF
    Understanding the power of the prime minister is important because of the centrality of the prime minister within the core executive of British government, but existing models of prime ministerial power are unsatisfactory for various reasons. This article makes an original contribution by providing an overview and critique of the dominant models of prime ministerial power, highlighting their largely positivist bent and the related problem of the prevalence of overly parsimonious conceptions of the structural contexts prime ministers face. The central argument the paper makes is that much of the existing literature on prime ministerial power is premised on flawed understandings of the relationship between structure and agency, that this leads to misunderstandings of the real scope of prime ministerial agency, as well as its determinants, and that this can be rectified by adopting a strategic-relational view of structure and agency

    Large sub-clonal variation in <i>Phytophthora infestans</i> from recent severe late blight epidemics in India

    Get PDF
    Abstract The population structure of the Phytophthora infestans populations that caused the recent 2013–14 late blight epidemic in eastern India (EI) and northeastern India (NEI) was examined. The data provide new baseline information for populations of P. infestans in India. A migrant European 13_A2 genotype was responsible for the 2013–14 epidemic, replacing the existing populations. Mutations have generated substantial sub-clonal variation with 24 multi-locus genotypes (MLGs) found, of which 19 were unique variants not yet reported elsewhere globally. Samples from West Bengal were the most diverse and grouped alongside MLGs found in Europe, the UK and from neighbouring Bangladesh but were not linked directly to most samples from south India. The pathogen population was broadly more aggressive on potato than on tomato and resistant to the fungicide metalaxyl. Pathogen population diversity was higher in regions around the international borders with Bangladesh and Nepal. Overall, the multiple shared MLGs suggested genetic contributions from UK and Europe in addition to a sub-structure based on the geographical location within India. Our data indicate the need for improved phytosanitary procedures and continuous surveillance to prevent the further introduction of aggressive lineages of P. infestans into the country

    Shrub Invasion Decreases Diversity and Alters Community Stability in Northern Chihuahuan Desert Plant Communities

    Get PDF
    BACKGROUND:Global climate change is rapidly altering species range distributions and interactions within communities. As ranges expand, invading species change interactions in communities which may reduce stability, a mechanism known to affect biodiversity. In aridland ecosystems worldwide, the range of native shrubs is expanding as they invade and replace native grassland vegetation with significant consequences for biodiversity and ecosystem functioning. METHODOLOGY:We used two long-term data sets to determine the effects of shrub encroachment by Larrea tridentata on subdominant community composition and stability in formerly native perennial grassland dominated by Bouteloua eriopoda in New Mexico, USA. PRINCIPAL FINDINGS:Our results indicated that Larrea invasion decreased species richness during the last 100 years. We also found that over shorter temporal scales species-poor subdominant communities in areas invaded by Larrea were less stable (more variable in time) compared to species rich communities in grass-dominated vegetation. Compositional stability increased as cover of Bouteloua increased and decreased as cover of Larrea increased. SIGNIFICANCE:Changes in community stability due to altered interspecific interactions may be one mechanism by which biodiversity declines in grasslands following shrub invasion. As global warming increases, shrub encroachment into native grasslands worldwide will continue to alter species interactions and community stability both of which may lead to a decline in biodiversity

    Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordBiodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well-being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize and interpret biodiversity observation data from diverse sources. Mapping and analysing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within-species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modelling, and technological advances. We propose four Genetic EBVs: (1) genetic diversity; (2) genetic differentiation; (3) inbreeding; and (4) effective population size (Ne). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modelling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large-scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species’ long-term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.Natural Environment Research Council (NERC

    The genetic legacy of extreme exploitation in a polar vertebrate

    Get PDF
    Understanding the effects of human exploitation on the genetic composition of wild populations is important for predicting species persistence and adaptive potential. We therefore investigated the genetic legacy of large-scale commercial harvesting by reconstructing, on a global scale, the recent demographic history of the Antarctic fur seal (Arctocephalus gazella), a species that was hunted to the brink of extinction by 18th and 19th century sealers. Molecular genetic data from over 2,000 individuals sampled from all eight major breeding locations across the species’ circumpolar geographic distribution, show that at least four relict populations around Antarctica survived commercial hunting. Coalescent simulations suggest that all of these populations experienced severe bottlenecks down to effective population sizes of around 150–200. Nevertheless, comparably high levels of neutral genetic variability were retained as these declines are unlikely to have been strong enough to deplete allelic richness by more than around 15%. These findings suggest that even dramatic short-term declines need not necessarily result in major losses of diversity, and explain the apparent contradiction between the high genetic diversity of this species and its extreme exploitation history

    Phylogenetic relationships in southern African Bryde's whales inferred from mitochondrial DNA : further support for subspecies delineation between the two allopatric populations

    Get PDF
    Bryde’s whales (Balaenoptera edeni) are medium-sized balaenopterids with tropical and subtropical distribution. There is confusion about the number of species, subspecies and populations of Bryde’s whale found globally. Two eco-types occur off South Africa, the inshore and offshore forms, but with unknown relationship between them. Using the mtDNA control region we investigated the phylogenetic relationship of these populations to each other and other Bryde’s whale populations. Skin, baleen and bone samples were collected from biopsy-sampled individuals, strandings and museum collections. 97 sequences of 674 bp (bp) length were compared with published sequences of Bryde’s whales (n = 6) and two similar species, Omura’s (B. omurai) and sei (B. borealis) whales (n = 3). We found eight haplotypes from the study samples: H1–H4 formed a distinct, sister clade to pelagic populations of Bryde’s whales (B. brydei) from the South Pacific, North Pacific and Eastern Indian Ocean. H5–H8 were included in the pelagic clade. H1–H4 represented samples from within the distributional range of the inshore form. Pairwise comparisons of the percentage of nucleotide differences between sequences revealed that inshore haplotypes differed from published sequences of B. edeni by 4.7–5.5% and from B. brydei by 1.8–2.1%. Ten fixed differences between inshore and offshore sequences supported 100% diagnosability as subspecies. Phylogenetic analyses grouped the South African populations within the Bryde’s-sei whale clade and excluded B. edeni. Our data, combined with morphological and ecological evidence from previous studies, support subspecific classification of both South African forms under B. brydei and complete separation from B. edeni.PostprintPeer reviewe
    corecore