137 research outputs found

    Primordial helium recombination II: two-photon processes

    Get PDF
    Interpretation of precision measurements of the cosmic microwave background (CMB) will require a detailed understanding of the recombination era, which determines such quantities as the acoustic oscillation scale and the Silk damping scale. This paper is the second in a series devoted to the subject of helium recombination, with a focus on two-photon processes in He I. The standard treatment of these processes includes only the spontaneous two-photon decay from the 2^1S level. We extend this treatment by including five additional effects, some of which have been suggested in recent papers but whose impact on He I recombination has not been fully quantified. These are: (i) stimulated two-photon decays; (ii) two-photon absorption of redshifted HeI line radiation; (iii) two-photon decays from highly excited levels in HeI (n^1S and n^1D, with n>=3); (iv) Raman scattering; and (v) the finite width of the 2^1P^o resonance. We find that effect (iii) is highly suppressed when one takes into account destructive interference between different intermediate states contributing to the two-photon decay amplitude. Overall, these effects are found to be insignificant: they modify the recombination history at the level of several parts in 10^4.Comment: 19 pages, 11 figures, to be submitted to PR

    CMB B-mode polarization from Thomson scattering in the local universe

    Get PDF
    [Abridged] The polarization of the CMB is widely recognized as a potential source of information about primordial gravitational waves. The gravitational wave contribution can be separated from the dominant CMB polarization created by density perturbations because it generates both E and B polarization modes, whereas the density perturbations create only E polarization. The limits of our ability to measure gravitational waves are thus determined by statistical and systematic errors, foregrounds, and nonlinear evolution effects such as lensing of the CMB. Usually it is assumed that most foregrounds can be removed because of their frequency dependence, however Thomson scattering of the CMB quadrupole by electrons in the Galaxy or nearby structures shares the blackbody frequency dependence of the CMB. If the optical depth from these nearby electrons is anisotropic, the polarization generated can include B modes even without tensor perturbations. We estimate this effect for the Galactic disk and nearby extragalactic structures, and find that it contributes to the B polarization at the level of ~(1--2)x10^-4\mu K per logarithmic interval in multipole L for L<30. This is well below the detectability level even for a future CMB polarization satellite. Depending on its structure and extent, the Galactic corona may be a source of B-modes comparable to the residual large-scale lensing B-mode after the latter has been cleaned using lensing reconstruction techniques. For an extremely ambitious post-Planck CMB experiment, Thomson scattering in the Galactic corona is thus a potential contaminant of the gravitational wave signal; conversely, if the other foregrounds can be cleaned out, such an experiment might be able to constrain models of the corona.Comment: 10 pages, 4 figures, to be submitted to Phys. Rev.

    Crustal-scale degassing due to magma system destabilization and magma-gas decoupling at Soufrière Hills Volcano, Montserrat

    Get PDF
    Activity since 1995 at Soufrière Hills Volcano (SHV), Montserrat has alternated between andesite lava extrusion and quiescence, which are well correlated with seismicity and ground deformation cycles. Large variations in SO₂ flux do not correlate with these alternations, but high and low HCl/SO₂ characterize lava dome extrusion and quiescent periods respectively. Since lava extrusion ceased (February 2010) steady SO₂ emissions have continued at an average rate of 374 tonnes/day (± 140 t/d), and incandescent fumaroles (temperatures up to 610°C) on the dome have not changed position or cooled. Occasional short bursts (over several hours) of higher (∼ 10x) SO₂ flux have been accompanied by swarms of volcano-tectonic earthquakes. Strain data from these bursts indicate activation of the magma system to depths up to 10 km. SO₂ emissions since 1995 greatly exceed the amounts that could be derived from 1.1 km³ of erupted andesite, and indicating extensive partitioning of sulfur into a vapour phase, as well as efficient decoupling and outgassing of sulfur-rich gases from the magma. These observations are consistent with a vertically extensive, crustal magmatic mush beneath SHV. Three states of the magmatic system are postulated to control degassing. During dormant periods (10³ to 10⁴ years) magmatic vapour and melts separate as layers from the mush and decouple from each other. In periods of unrest (years) without eruption, melt and fluid layers become unstable, ascend and can amalgamate. Major destabilization of the mush system leads to eruption, characterized by magma mixing and release of volatiles with different ages, compositions and sources.RSJS acknowledges an ERC advanced grant (VOLDIES). JDB acknowledges ERC advanced grant CRITMAG and a Wolfson Research Merit Award.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/2015GC00579

    The Spin-Resolved Atomic Velocity Distribution and 21-cm Line Profile of Dark-Age Gas

    Full text link
    The 21-cm hyperfine line of atomic hydrogen (HI) is a promising probe of the cosmic dark ages. In past treatments of 21-cm radiation it was assumed the hyperfine level populations of HI could be characterized by a velocity-independent ``spin temperature'' T_s determined by a competition between 21-cm radiative transitions, spin-changing collisions, and (at lower redshifts) Lyman-alpha scattering. However we show here that, if the collisional time is comparable to the radiative time, the spin temperature will depend on atomic velocity, T_s=T_s(v), and one must replace the usual hyperfine level rate equations with a Boltzmann equation describing the spin and velocity dependence of the HI distribution function. We construct here the Boltzmann equation relevant to the cosmic dark ages and solve it using a basis-function method. Accounting for the actual spin-resolved atomic velocity distribution results in up to a 2 per cent suppression of the 21-cm emissivity, and a redshift and angular-projection dependent suppression or enhancement of the linear power spectrum of 21-cm fluctuations of up to 5 per cent. The effect on the 21-cm line profile is more dramatic -- its full-width at half maximum (FWHM) can be enhanced by up to 60 per cent relative to the velocity-independent calculation. We discuss the implications for 21-cm tomography of the dark ages.Comment: 25 pages, 6 figures, submitted to Mon. Not. Roy. Astron. So

    Periodic sulphur dioxide degassing from the Soufriere Hills Volcano related to deep magma supply

    Get PDF
    Soufrière Hills Volcano produced prodigious quantities of sulphur dioxide (SO2) gas throughout 1995–2013. An unprecedented, detailed record of SO2 flux shows that high SO2 fluxes were sustained through eruptive pauses and for two years after the end of lava extrusion and are decoupled from lava extrusion rates. Lava extrusion rates have exhibited strong 1- to 2-year cyclicity. Wavelet analysis demonstrates periodicities of c. 5 months and c. 2 years within the SO2 time series, as well as the shorter cycles identified previously. The latter period is similar to the wavelength of cycles in lava extrusion, albeit non-systematically offset. The periodicities are consistent with pressure changes accompanying deformation in a coupled magma reservoir system whereby double periodic behaviour may arise from limited connectivity between two reservoirs. During periods of lava extrusion SO2 is released together with the lava (yielding the c. 2 year period), albeit with some offset. In contrast, when magma cannot flow because of its yield strength, SO2 is released independently from lava (yielding the c. 5 month period). Our results have implications for eruption forecasting. It seems likely that, when deep supply of magma ceases, gas fluxes will cease to be periodic

    Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean

    Get PDF
    Author Posting. © Nature Publishing Group, 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 453 (2008): 1236-1238, doi:10.1038/nature07075.Roughly 60% of the Earth’s outer surface is comprised of oceanic crust formed by volcanic processes at mid-ocean ridges (MORs). Although only a small fraction of this vast volcanic terrain has been visually surveyed and/or sampled, the available evidence suggests that explosive eruptions are rare on MORs, particularly at depths below the critical point for steam (3000 m). A pyroclastic deposit has never been observed on the seafloor below 3000 m, presumably because the volatile content of mid-ocean ridge basalts is generally too low to produce the gas fractions required to fragment a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel Ridge in the Arctic Basin at 85°E, to acquire the first-ever photographic images of ‘zero-age’ volcanic terrain on this remote, ice-covered MOR. Our imagery reveals that the axial valley at 4000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large area greater than 10 km2. At least 13.5 wt% CO2 is required to fragment magma at these depths, which is ~10x greater than the highest values measured to-date in a MOR basalt. These observations raise important questions regarding the accumulation and discharge of magmatic volatiles at ultra-slow spreading rates on the Gakkel Ridge (6- 14 mm yr-1, full-rate), and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global MOR volcanic system.This research was funded by the National Aeronautics and Space Administration, the National Science Foundation, and the Woods Hole Oceanographic Institution

    Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer's disease mouse models

    Get PDF
    Microglia and complement can mediate neurodegeneration in Alzheimer's disease (AD). By integrative multi-omics analysis, here we show that astrocytic and microglial proteins are increased in Tau P301S synapse fractions with age and in a C1q-dependent manner. In addition to microglia, we identified that astrocytes contribute substantially to synapse elimination in Tau P301S hippocampi. Notably, we found relatively more excitatory synapse marker proteins in astrocytic lysosomes, whereas microglial lysosomes contained more inhibitory synapse material. C1q deletion reduced astrocyte-synapse association and decreased astrocytic and microglial synapses engulfment in Tau P301S mice and rescued synapse density. Finally, in an AD mouse model that combines β-amyloid and Tau pathologies, deletion of the AD risk gene Trem2 impaired microglial phagocytosis of synapses, whereas astrocytes engulfed more inhibitory synapses around plaques. Together, our data reveal that astrocytes contact and eliminate synapses in a C1q-dependent manner and thereby contribute to pathological synapse loss and that astrocytic phagocytosis can compensate for microglial dysfunction
    corecore