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Roughly 60% of the Earth’s outer surface is comprised of oceanic crust formed by volcanic 

processes at mid-ocean ridges (MORs). Although only a small fraction of this vast volcanic 

terrain has been visually surveyed and/or sampled, the available evidence suggests that 

explosive eruptions are rare on MORs, particularly at depths below the critical point for 
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steam (3000 m).1 A pyroclastic deposit has never been observed on the seafloor below 3000 

m, presumably because the volatile content of mid-ocean ridge basalts is generally too low 

to produce the gas fractions required to fragment a magma at such high hydrostatic 

pressure. We employed new deep submergence technologies during an International Polar 

Year expedition to the Gakkel Ridge in the Arctic Basin at 85°E, to acquire the first-ever 

photographic images of ‘zero-age’ volcanic terrain on this remote, ice-covered MOR. Our 

imagery reveals that the axial valley at 4000 m water depth is blanketed with 

unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele),2 

covering a large area greater than 10 km2. At least 13.5 wt% CO2 is required to fragment 

magma at these depths,3 which is ~10x greater than the highest values measured to-date in 

a MOR basalt.4 These observations raise important questions regarding the accumulation 

and discharge of magmatic volatiles at ultra-slow spreading rates on the Gakkel Ridge (6-

14 mm yr-1, full-rate),5 and demonstrate that large-scale pyroclastic activity is possible 

along even the deepest portions of the global MOR volcanic system. 

The Gakkel Ridge, stretching ~1800 km across the eastern Arctic Basin, is the ultraslow 

spreading end-member of the global mid-ocean ridge system, and in 1999 the Global Seismic 

Network (GSN) detected the largest MOR earthquake swarm in recorded history6 on the ridge at 

85°E. Several lines of evidence suggest that the swarm was associated with a major volcanic 

event,6-10 but our ability to characterize volcanic processes in this region has been limited by its 

remote location and ice cover. From July 15-31, 2007, the Arctic Gakkel Vents (AGAVE) 

expedition aboard the icebreaker Oden surveyed the presumed eruption site using a Kongsberg 

EM120 1° x 1° multi-beam echo sounder , a Conductivity-Temperature-Depth (CTD)/rosette, 

two autonomous underwater vehicles (AUVs), and a sub-ice camera and sampling platform 

(CAMPER).  



We produced a high-resolution bathymetric map of the axial valley floor at 85°E by 

operating the sonar system while drifting quiescently in the ice pack. The combination of the 

low-noise survey mode, and the variance reduction obtained from ping averaging several dozen 

overlapping tracklines, allowed us to produce a highly-detailed sonar image of the eruption site 

(Figure 1), showing that the axial valley is filled with highly distinctive volcanic features. These 

volcanoes are up to ~2000 m in diameter by a few hundred meters high. They are commonly flat-

topped, contain a prominent central crater, and appear to cluster on ridge-parallel faults or 

fissures. The type example is perhaps Oden volcano, which is ~300 m tall, ~1.5 km diameter, 

and contains a ~50 m deep by ~500 m diameter central crater (Figure 1). 

A real-time, fibre-optic connection allowed scientists aboard the icebreaker to ‘fly’ the 

CAMPER vehicle 2-5 m above the seafloor within the region of the suspected eruption and 

acquire photographic still-imagery and high-definition video imagery of the volcanoes and the 

eruption site. Surprisingly, the images reveal that the axial valley topography is blanketed with 

unconsolidated pyroclastic deposits up to 10 cm thick. The thickest deposits overlie the 

weathered and broken lava flows (Figure 2a) on Jessica’s Hill and Duque’s Hill in the center of 

the axial valley (Figure 1), while the fresh (i.e., un-weathered, glassy, surfaces with delicate 

ornamentations) lava flows on the Oden and Loke volcanoes are covered with just a light dusting 

of material. Pyroclasts are piled atop pillows and other high-standing features, indicating 

deposition by fall rather than flow. Multiple falls are implied by spatial variations in the apparent 

age (color) and thickness of the deposits, and distinct boundaries between two or more deposits 

are evident in some places. The maximum extent of the pyroclastic material is not known, as the 

deposits were observed to cover every portion of the seafloor that we surveyed (~20 linear km 

within a ~ 5 x 10 km region). 

A series of eight dives across the Oden and Loke volcanoes suggests that the ubiquitous 

flat-topped volcanoes may be source vents for pyroclastic eruptions, possibly including 



vulcanian explosions. These volcanoes contain most of the fresh lava flows observed in our 

survey, which consist primarily of pillows, but also include ropey sheet flows, covering small 

areas (~100-200 m2) on the top and around the outer edges of the constructional features. The 

mixture of young and old lava flows we observed demonstrates that the high-acoustic backscatter 

region imaged in 1999 does not represent a single, fresh lava flow.8 The crater of Oden volcano 

is filled with weathered, basaltic talus but contains no visible fault scarps. The talus is covered by 

small amounts of pyroclasts, and the block sizes generally decrease moving away from the crater 

center, extending onto the outer slopes of the volcano (Figure 2b). These observations are 

consistent with interpretation of the talus blocks as country rock ejecta from a vulcanian 

explosion, which may also play a role in crater formation, but at this point we cannot 

unequivocally rule out the possibility that the talus was formed by mass wasting.  

Approximately 0.8 kg of clasts were collected from two sites along our tracklines using a 

retractable slurp (suction) device mounted on the CAMPER vehicle. The samples consisted 

nearly entirely of juvenile clasts of glassy basalt (Figure 2c) with a small (<< 5%) component of 

crystalline and altered crystalline rock. The clasts are primarily angular fragments, many with 

cuspate surfaces, that range in size from 1-20 mm (the suction sampler does not preserve in situ 

sorting). The clasts contain minor olivine and plagioclase microphenocrysts, and have low (< 

5%) vesicularity. In addition, the deposits contain small amounts of limu o pele,2, 11 which are 

thin, glassy, bubble wall fragments, 3-20 mm across, with fluidal folded morphologies (Figure 

2d). 

Large volume pyroclastic deposits have been found in shallow water (500-1750 m depth) 

on the Azores Plateau,12-14 but the only previous evidence of pyroclastic material at water depths 

greater than 3000 m (critical depth for steam) is limited to small fragments recovered in sediment 

cores.15, 16 Hydrostatic pressure inhibits volume expansion, and below the steam threshold 

explosive activity must result from magmatic volatiles rather than secondary surface effects. CO2 



is the most plausible exsolved volatile component for mid-ocean ridge basalts,15 and at 4000 m 

water depth a CO2 weight fraction of ~14%3 is required to achieve the volume fraction of ~75% 

required to fragment an erupting magma.17 This value exceeds the maximum dissolved CO2 

concentrations measured in a mid-ocean ridge basalt (~1.4 wt% in a ‘popping rock’)4 by an order 

of magnitude. 

Volatiles that exsolve during magma ascent or decompression may coalesce to produce 

finite volumes of magma with gas volume fractions sufficient to trigger pyroclastic activity, even 

in magmas with primary volatile levels well below the fragmentation threshold. The nature of 

pyroclastic activity triggered by this process depends on the amount of volatiles and the depth 

where fragmentation occurs. For example, if gas exsolution and expansion occurs during the 

slow rise of an erupting dike, and the rising bubbles coalescence in the upper few hundred meters 

of the crust (i.e., slug flow), then Strombolian (bubble burst) activity may occur at the seafloor. 

The observation of bubble wall fragments in our pyroclastic samples is consistent with some 

level of Strombolian activity, but this mechanism distributes clasts to maximum distances of 

~20-40 m from the source vent,3 which is inconsistent with the widespread distribution of 

material over the > 10 km2 region observed in our survey.  

A more energetic mechanism is required to deposit clasts more than a few tens of meters 

from the source vent, which is possible if fragmentation occurs deeper within the crust. The 

accumulation of volatiles as a foam layer within a magma chamber18 provides the most plausible 

mechanism for deep fragmentation. Exsolved volatiles may accumulate in a chamber over long 

periods of time, and then discharge explosively when the roof is fractured during an eruption, 

spreading pyroclastic material over large areas proportional to the chamber depth. For the range 

of parameters appropriate for our study area, we find that pyroclastic fountains may rise as high 

as 1-2 km in the water column if they are produced by the eruption of magmatic foams from a 

crustal chamber (Table 1).  



These results provide a new perspective for interpreting the 1999 seismic swarm and 

volcanic event at the 85°E site. The seismic swarm began with extensional events, but after three 

months the earthquakes changed to sources with large volume changes (implosions).6 Large 

volume change events are rare at MORs, but they are consistent with the explosive discharge of 

material from a deep-lying magma chamber. The sequence of extensional earthquakes leading up 

to the implosions may have perturbed the stress field enough to fracture the chamber roof, 

thereby releasing a pressurized magmatic foam. Rapid acceleration of decompressing volatiles 

may have triggered vulcanian explosions during the eruption,3 consistent with the talus 

distribution observed on Oden volcano. Multiple episodes of explosive volatile discharge over a 

prolonged period of time are required to produce the variations in apparent age and thickness of 

the deposits we observed, and we note that small-magnitude explosive acoustic signals were 

detected by local (ice-mounted) seismic networks at the eruption site more than two years after 

the 1999 seismic swarm.19 Explosive volatile discharge has clearly been a widespread, and on-

going, process at the 85°E segment. 

Our results raise new questions regarding volatile processes in ultra-slow spreading 

magmatic systems. More observations are required to determine the ubiquity of pyroclastic 

activity at ultra-slow spreading rates (<15-20 mm yr-1, full rate), but from first principles there is 

reason to believe that ultra-slow spreading ridges may be especially conducive to the build up 

and explosive discharge of volatile-rich magmatic foams. Long time intervals between eruptions 

should increase the amount of volatiles that can be accumulated in a magma chamber, and if the 

global correlation between spreading rate and magma chamber depth extends to ultra-slow rates, 

then volatile build-up will occur deep within the crust at high storage pressures. Our results add 

to the growing body of evidence that ultra-slow spreading ridges host unique modes of crustal 

accretion and tectonic extension,20, 21 and motivate continuing efforts to solve the technical and 

logistical issues that have impeded scientific access to these unique geological environments.



Table 1. Variation in pyroclastic jet characteristics with magma chamber depth. 

Magma Chamber 
Roof Depth, m 

Minimum CO2 
Volume Fraction 

in Foam 

Pyroclastic Jet 
Mixture Density 
at Vent, kg/m3 

Average Jet Exit-
Velocity at Vent, 

m/s 

Plume Rise 
Height in Water 

Column, m 

1000 0.6443 568 236 544 

2000 0.5647 462 343 956 

3000 0.5026 398 424 1276 

4000 0.4528 355 490 1532 

5000 0.4120 324 544 1741 

6000 0.3779 302 591 1916 

Following the analysis presented in sections 2.4 and 2.5 of Head and Wilson (2003), we calculate 

the minimum CO2 volume fraction in a magmatic foam accumulating under the roof of a crustal 

magma chamber required to produce seafloor pyroclastic activity at a depth = 4000 m. Magma 

chamber foams with the gas volume fractions shown in column 2 will fragment just before 

reaching the seafloor, producing very small deposits. However, if the CO2 volume fraction in the 

foam is ~0.75 then fragmentation occurs at the magma chamber depth, and a much more 

energetic eruption occurs as the gas accelerates during ascent to the seafloor, producing the 

approximate conditions shown in columns 3-5.
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Figure Captions 

Figure 1. Detailed bathymetry (30 m grid spacing) of the Gakkel Ridge at 85°E in the Arctic 

Ocean. Inset map shows the location of the 85°E segment (yellow star) along the Gakkel Ridge 

(red line) in the Arctic basin. Main panel shows illuminated, color bathymetry of the 85°E 

segment acquired during the AGAVE expedition. The axial valley contains large numbers of 

distinctive, cratered, volcanoes, including a cone on a fault terrace of the northern valley wall. 

Photographic bottom surveys were conducted along profiles shown as thin, black lines on the 

map. Pyroclastic deposit samples were collected at sites shown by white circles, and the 

photographs shown in Figure 2a and 2b were taken at the sites shown by the lettered, red, stars. 

Named features include two volcanic ridges in the center of the axial valley (Jessica’s Hill and 

Duque’s Hill), and three cratered volcanoes along a ridge-parallel fissure to the south (Oden, 

Thor, and Loke). The bathymetry data were plotted using Generic Mapping Tools.22 

Figure 2. Photographs of pyroclastic deposits. (A). Frame grab from a high-definition video 

camera taken on the south side of Duque’s Hill (see Figure 1 for location). Approximately 10 cm 

(visually estimated and confirmed during sampling) of pyrolcastic material is piled atop a high-

standing, weathered, pillow feature. The exoskeleton of a to-this-point unidentified species of 

hexactinellid sponge23 is visible in the foreground. (B) High-definition video frame grab of talus 

blocks possibly representing ejecta from a vulcanian explosion on Oden volcano (see Figure 1 

for location). (C) Glassy, granular, pyroclastic material. (D) Bubble wall fragment from 

pyroclastic deposit. 

 
 
 
 
 
 


