93 research outputs found

    Profiles of Multidrug Resistance Protein-1 in the Peripheral Blood Mononuclear Cells of Patients with Refractory Epilepsy

    Get PDF
    BACKGROUND: About one third of patients with epilepsy become refractory to therapy despite receiving adequate medical treatment, possibly from multidrug resistance. P-glycoprotein, encoded by multidrug resistance protein-1 (MDR1) gene, at the blood brain barrier is considered as a major factor mediating drug efflux and contributing to resistance. Given that peripheral blood mononuclear cells (PBMNCs) express MDR1, we investigated a MDR1 status of PBMNCs in various subsets of epilepsy patients and demonstrated their association with clinical characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Clinical and MDR1 data were collected from 140 patients with epilepsy, 30 healthy volunteers, and 20 control patients taking anti-epileptic drugs. PBMNCs were isolated, and basal MDR1 levels and MDR1 conformational change levels were measured by flow cytometry. MDR1 profiles were analyzed according to various clinical parameters, including seizure frequency and number of medications used in epilepsy patients. Epilepsy patients had a higher basal MDR1 level than non-epilepsy groups (p<0.01). Among epilepsy patients, there is a tendency for higher seizure frequency group to have higher basal MDR1 level (p = 0.059). The MDR1 conformational change level was significantly higher in the high-medication-use group than the low-use group (p = 0.028). Basal MDR1 (OR = 1.16 [95% CI: 1.060-1.268]) and conformational change level (OR = 1.11 [95% CI: 1.02-1.20]) were independent predictors for seizure frequency and number of medications, respectively. CONCLUSIONS/SIGNIFICANCE: The MDR1 profile of PBMNCs is associated with seizure frequency and medication conditions in patients with epilepsy

    Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition

    Get PDF
    Several cell-based therapies are under pre-clinical and clinical evaluation for the treatment of ischemic diseases. Poor survival and vascular engraftment rates of transplanted cells force them to work mainly via time-limited paracrine actions. Although several approaches, including the use of soluble vascular endothelial growth factor (sVEGF)-VEGF165, have been developed in the last 10 years to enhance cell survival, they showed limited efficacy. Here, we report a pro-survival approach based on VEGF-immobilized microparticles (VEGF-MPs). VEGF-MPs prolong VEGFR-2 and Akt phosphorylation in cord blood-derived late outgrowth endothelial progenitor cells (OEPCs). In vivo, OEPC aggregates containing VEGF-MPs show higher survival than those treated with sVEGF. Additionally, VEGF-MPs decrease miR-17 expression in OEPCs, thus increasing the expression of its target genes CDKN1A and ZNF652. The therapeutic effect of OEPCs is improved in vivo by inhibiting miR-17. Overall, our data show an experimental approach to improve therapeutic efficacy of proangiogenic cells for the treatment of ischemic diseases.Soluble vascular endothelial growth factor (VEGF) enhances vascular engraftment of transplanted cells but the efficacy is low. Here, the authors show that VEGF-immobilized microparticles prolong survival of endothelial progenitors in vitro and in vivo by downregulating miR17 and upregulating CDKN1A and ZNF652

    (R)-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate.</p> <p>Methods</p> <p><it>(R)</it>-[<sup>11</sup>C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on <it>(R)</it>-[<sup>11</sup>C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. <it>(R)</it>-[<sup>11</sup>C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM).</p> <p>Results</p> <p>All data analysis approaches indicated only modest differences in brain distribution of <it>(R)</it>-[<sup>11</sup>C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats.</p> <p>Conclusions</p> <p>P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.</p

    New Insight into the Transcarbamylase Family: The Structure of Putrescine Transcarbamylase, a Key Catalyst for Fermentative Utilization of Agmatine

    Get PDF
    Transcarbamylases reversibly transfer a carbamyl group from carbamylphosphate (CP) to an amine. Although aspartate transcarbamylase and ornithine transcarbamylase (OTC) are well characterized, little was known about putrescine transcarbamylase (PTC), the enzyme that generates CP for ATP production in the fermentative catabolism of agmatine. We demonstrate that PTC (from Enterococcus faecalis), in addition to using putrescine, can utilize L-ornithine as a poor substrate. Crystal structures at 2.5 Å and 2.0 Å resolutions of PTC bound to its respective bisubstrate analog inhibitors for putrescine and ornithine use, N-(phosphonoacetyl)-putrescine and δ-N-(phosphonoacetyl)-L-ornithine, shed light on PTC preference for putrescine. Except for a highly prominent C-terminal helix that projects away and embraces an adjacent subunit, PTC closely resembles OTCs, suggesting recent divergence of the two enzymes. Since differences between the respective 230 and SMG loops of PTC and OTC appeared to account for the differential preference of these enzymes for putrescine and ornithine, we engineered the 230-loop of PTC to make it to resemble the SMG loop of OTCs, increasing the activity with ornithine and greatly decreasing the activity with putrescine. We also examined the role of the C-terminal helix that appears a constant and exclusive PTC trait. The enzyme lacking this helix remained active but the PTC trimer stability appeared decreased, since some of the enzyme eluted as monomers from a gel filtration column. In addition, truncated PTC tended to aggregate to hexamers, as shown both chromatographically and by X-ray crystallography. Therefore, the extra C-terminal helix plays a dual role: it stabilizes the PTC trimer and, by shielding helix 1 of an adjacent subunit, it prevents the supratrimeric oligomerizations of obscure significance observed with some OTCs. Guided by the structural data we identify signature traits that permit easy and unambiguous annotation of PTC sequences

    Comparative analysis of novel and conventional Hsp90 inhibitors on HIF activity and angiogenic potential in clear cell renal cell carcinoma: implications for clinical evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perturbing Hsp90 chaperone function targets hypoxia inducible factor (HIF) function in a von Hippel-Lindau (VHL) independent manner, and represents an approach to combat the contribution of HIF to cell renal carcinoma (CCRCC) progression. However, clinical trials with the prototypic Hsp90 inhibitor 17-AAG have been unsuccessful in halting the progression of advanced CCRCC.</p> <p>Methods</p> <p>Here we evaluated a novel next generation small molecule Hsp90 inhibitor, EC154, against HIF isoforms and HIF-driven molecular and functional endpoints. The effects of EC154 were compared to those of the prototypic Hsp90 inhibitor 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589.</p> <p>Results</p> <p>The findings indicate that EC154 is a potent inhibitor of HIF, effective at doses 10-fold lower than 17-AAG. While EC154, 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589 impaired HIF transcriptional activity, CCRCC cell motility, and angiogenesis; these effects did not correlate with their ability to diminish HIF protein expression. Further, our results illustrate the complexity of HIF targeting, in that although these agents suppressed HIF transcripts with differential dynamics, these effects were not predictive of drug efficacy in other relevant assays.</p> <p>Conclusions</p> <p>We provide evidence for EC154 targeting of HIF in CCRCC and for LBH589 acting as a suppressor of both HIF-1 and HIF-2 activity. We also demonstrate that 17-AAG and EC154, but not LBH589, can restore endothelial barrier function, highlighting a potentially new clinical application for Hsp90 inhibitors. Finally, given the discordance between HIF activity and protein expression, we conclude that HIF expression is not a reliable surrogate for HIF activity. Taken together, our findings emphasize the need to incorporate an integrated approach in evaluating Hsp90 inhibitors within the context of HIF suppression.</p

    Cancer stem cell metabolism: A potential target for cancer therapy

    Get PDF
    © 2016 The Author(s). Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival, evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids, and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation of cancer cells. This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy

    Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Get PDF
    We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore