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Abstract

Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to
be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that
may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter
their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic
glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of
glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to
dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and
maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival,
evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow
rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids,
and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation
of cancer cells.
This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights
how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs
may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy.
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Background
Chemotherapy, along with radiotherapy and hormone
therapy, is the most common treatment for cancer. Due
to the side effects of treatment and chemo-resistance of
the tumour cells, researchers have shifted their focus to
more site-specific treatments in order to achieve better
results [1].
Over the past decade, a critical role of a small subset

of tumour cells, known as cancer stem cells (CSCs), was
established in tumour relapse and propagation [2, 3].
Most solid tumours, including breast, brain, prostate,
ovary, mesothelioma, and colon cancer contain this
small subset of self-renewing tumour initiating cells [4].
Conventional anti-cancer therapies inhibit/kill the bulk
of the heterogeneous tumour mass, resulting in tumour

shrinkage. However, it has been suggested that later, the
CSCs differentiate into tumour cells and are responsible
for tumour relapse (Fig. 1). The identification of novel
therapies to target CSCs has been the goal of many can-
cer research laboratories, and recent studies suggest the
CSCs undergo metabolic alterations that include low
mitochondrial respiration and high glycolytic activity.
Exploiting the CSCs' metabolic alterations may provide
new effective therapies and diminish the risk of recur-
rence and metastasis [5, 6].

Tumour cell metabolism
To induce their lethal effects and maintain survival,
tumour cells alter their metabolism to ensure survival,
evade host immune attack, and proliferate [7]. This
clever strategy of tumour cells was exposed by Otto
Warburg in the 1920s when he proved that, in spite of
the presence of abundant oxygen, tumour cells metabol-
ise glucose via glycolysis to produce lactate. They adopt
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this pathway in order to produce ATP through a fermen-
tation process that is much faster compared to the con-
ventional oxidative phosphorylation (respiration), and
also avoids the requirement for mitochondrial oxidative
phosphorylation. This meets the requirement for the tri-
carboxylic acid (TCA) cycle activity to be directed to-
wards biosynthesis rather than ATP production. Inner
regions of tumours are known to be hypoxic [7–10].
However, the application of anaerobic glycolysis for en-
ergy supply is just one part of the metabolic transform-
ation of tumour cells. In order to multiply and survive,
the cell must be able to replicate its genome, protein
and lipid content, and other important constituents, and
also pass on important biomolecules to daughter cells.
To accomplish this, the tumour cells enhance the ex-
pression of glucose transporters (GLUTs) and monocar-
boxylate transporters (lactate/pyruvate) to ensure that
glucose is delivered and that lactate is transported out of
the cell [7, 11] (Fig. 2). Glutamine (via glutamate) and
some of the pyruvate enters the TCA cycle to initiate the
precursor supply towards biosynthetic reactions. The
theoretical significance of the Warburg effect can be
illustrated by the glucose uptake and solvent capacity of
the cell cytoplasm, i.e. the maximum number of
macromolecules that can be accommodated in the intra-
cellular space. Thus, when the glucose uptake rate is

low, glucose uptake capacity is the limiting factor and
mitochondrial respiration becomes the preferred source
for ATP generation. At a high glucose uptake rate, the
cell identifies the solvent capacity as its prime source for
generating ATP, which in turn activates aerobic glycoly-
sis and lessens mitochondrial respiration (Fig. 2). Hence,
the Warburg effect is the amicable catabolic choice for
proliferating tumour cells [12]. The other interesting
outcome elicited by the Warburg effect is the creation of
a tumour environment that facilitates survival and prolif-
eration of the tumours. In the process of their expan-
sion, the tumours stretch the diffusion limits of their
oxygenated blood supply and thus induce hypoxia and
stabilize the transcription factor HIF. HIF triggers
angiogenesis by regulating various associated factors,
especially vascular endothelial growth factor [13, 14].
The other strategy adopted by these tumour cells to
maximize their survival and proliferation is to increase
their glutamine use for supply of biosynthetic precur-
sors. Glutamine acts as a source of carbon and nitrogen
for biosynthetic reactions of cancer cells. It gets con-
verted to glutamate, enters into the TCA cycle, and acts
as a precursor for the synthesis of important intermedi-
ates such as NADPH, anti-oxidants and amino acids
such as α-ketoglutarate, aspartate, glutathione, and nu-
cleic acids. The glutamine is converted to glutamate by

Fig. 1 Cancer stem cells (CSCs) are a small sub-population of tumour cells that are highly chemo-resistant and play a prominent role in tumour
relapse. The chemo-resistant property of CSCs is believed to contribute to poor prognosis of conventional tumour treatments. Therefore, we
rationalise that therapy targeting CSCs would enable chemo-sensitization by affecting downstream cellular signalling pathways of tumour cells
and enable the drugs to destroy the tumour bulk.
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the mitochondrial enzyme glutaminase. Glutaminase is
highly expressed in rapidly growing tumour cells. An-
other link between oncogenic activation and tumour cell
metabolism was determined when a study established
that c-Myc increased glutaminase expression by sup-
pressing miR-23a/b [7, 15, 16]. Glutamine may be par-
tially or fully oxidised by tumour cells [17]. It acts as an
energy source through catabolism or as a building block
via anabolism in the body.

Cancer stem cells
The origin of CSCs is still unclear and further studies
are required in each type of cancer. CSCs are known to
remain in G0 phase [18, 19], the resting phase of the cell
cycle, and express high drug efflux transport systems.
CSCs, being in a dormant state, make it difficult for most
anti-cancer drugs that target only proliferative tumour
cells. CSCs exhibit specific characteristics such as self-
renewal and heterogeneous differentiation capacity, small
population (0.001–0.1 %), resistance to chemo/radiother-
apy, high metastatic ability, sphere forming ability, and
high ABC transporter expression [20, 21]. CSCs are also
known to have a high migratory capacity [22], enabling
their spread from the primary tumour to secondary sites
[23, 24]. Various techniques have been established to iso-
late CSCs from the tumour mass and characterise them.
CSCs are niche forming cells enriched with growth fac-
tors, and growing them in serum-free conditions contain-
ing growth factors, such as epidermal growth factor (EGF)
and basic fibroblast growth factor (bFGF), maintains the

undifferentiated stem cell state and induces the prolif-
eration of self-renewing, unipotent CSCs from paren-
tal cell lines [4, 25, 26]. CSCs are characterised by
specific surface markers such as CD133+/CXCR4+,
CD24+/CD44+, CD24+/CD44+/ESA+, c-Met+/CD44+, and
ALDH1+/CD133+ in pancreatic cancer [27, 28]; CD24−/low/
CD44+ in breast cancer; CD44+ in colon/ gastric/ head and
neck/ovarian cancer; CD34+/CD38− in leukaemia cells;
CD13/CD45/CD90 in liver cancer; CD117/CD90/EpCAM
in lung cancer; CD20/CD166/Nestin in melanoma can-
cer; and CD133+/ABCG2+ in Glioblastoma Multiforme
[29, 30]. CSCs also express various markers such as
CXCR4/ ESA and Nestin [27]. CD44 is one of the most im-
portant CSC markers for its role in promoting tumour me-
tastasis and invasion. CD44 has the capability to bind to its
primary ligand hyaluronic acid (HA), which initiates CSC
attachment to the extracellular matrix and contributes to
tumour cell migration [31]. ONCOFID™-S is a conjugate of
HA with SN38 (7-ethyl-10-hydroxycamptothecin) and
studies have demonstrated that it showed higher anti-
proliferative in-vitro activity compared to free SN38 when
used against colon, gastric, breast, oesophageal, lung, and
ovarian cancer cells, which overexpress CD44 [32, 33].
Therefore, a CD44-targeted therapeutic approach could be
utilised for better anti-tumour drug delivery.
The CSCs with CD44+High and CD133+High expression

are highly radio-resistant in colon cancer, and they also
have higher expression of AKT (AKT1/2) compared to
CD44Low and CD133Low cells, indicating their capacity for
higher DNA repair and the ability to escape cell death/

Fig. 2 Impact of glucose utilisation by CSCs and non CSCs highlights the difference in their metabolic profiles. Pyruvate enters the TCA cycle to
initiate the precursor or supply towards biosynthetic reactions. The Warburg effect in turn activates aerobic glycolysis and lessens mitochondrial
respiration, suggesting a preferred choice for proliferation.
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apoptosis post radiotherapy [34]. Therefore, selective tar-
geting of these markers can be an effective way to deliver
cytotoxic drugs to CSCs.

CSCs and their metabolic alterations
Although much is known regarding metabolic pathways
important for tumour survival, the potential for thera-
peutic metabolic alteration of CSCs still remains under in-
vestigation [35, 36]. Recent studies indicate that CSCs
have different metabolic properties when compared to the
tumour bulk. One such study on brain tumour CSCs re-
vealed that these cells show a low activity of mitochondrial
respiration [37]. This finding triggered the need to study
the effect of glucose in the microenvironment of CSCs be-
cause glucose was estimated to be critical for the CSCs. It
was found that CSCs have higher glycolytic rates than
other tumour cells [38]. Glucose induced the expression
of specific genes in CSCs associated with glucose metabol-
ism and the Akt pathway (c-Myc, GLUT1, HK-1, HK-2,
and PDK-1), which contributes to the rise in the CSC
population [38]. Glucose utilisation by CSCs and non
CSCs was compared by measuring their glucose con-
sumption and lactate production rates in order to estab-
lish evidence for the difference in metabolic profiles of
CSCs and the bulk of the tumour. It has been observed
that glucose uptake, lactate production, and ATP content
are elevated in CSCs as compared to the non CSCs (Fig. 2)
[39–41]. Many crucial molecules involved in glucose me-
tabolism have been studied in relation to the metabolism
of CSCs, such as hexokinase-1 (HK1), hexokinase-2
(HK2), pyruvate dehydrogenase kinase 1 (PDK1), and
glyceraldehyde-3-phosphate dehydrogenase. The PDK1
levels are high in the CSC population (Fig. 2). PDK-1, via
the TCA cycle, phosphorylates pyruvate dehydrogenase
and suppresses the pyruvate to acetyl-CoA conversion.
Furthermore, suppressing the metabolic flow of pyruvate
in mitochondria induces the conversion of pyruvate to lac-
tate in the cytosol [38, 42]. HK-1 and HK-2 both catalyse
the conversion of glucose to glucose-6-phosphate in gly-
colysis, but the levels of HK-2 are lower in CSCs while
that of HK-1 are higher, suggesting that HK-1 maintains
CSCs’ glycolytic activity. Interestingly, HIF-1α and c-Myc
expression (affects HK-2 expression) didn’t change in
CSCs and tumour cells. The increase in expression of pro-
teins in the Akt signalling pathway bestows CSCs with a
longer life span [8, 38].
Palorini et al. [41] studied the effect of glycolysis inhib-

ition and glucose deprivation on the CSC cell line 3AB-
OS, which was derived from the human osteosarcoma
cell line MG63. They reported that the 3AB-OS cells re-
quire glucose for survival and proliferation. The absence
of glucose caused death of the CSC cell line. Glutamine
deprivation led to a decline in the MG63 population,

which suggested that the 3AB-OS population was not
greatly affected by withdrawing glutamine.
Hence, incorporating these features into therapeutic

strategies to treat cancer can produce an extensively effi-
cient treatment for various cancers. Also, combining
glycolytic inhibition strategies with existing chemother-
apy can also help eliminate tumour load completely be-
cause the CSCs will also be targeted [41].

Targeting metabolic regulators
Understanding the mechanism by which CSCs are
chemo-resistant and initiate tumour relapse is very im-
portant in order to address cancer therapy and to
understand CSC biology (Fig. 1). B-cell lymphoma (Bcl-
2) protein and its family members are known metabolic
regulators, and it is recognised as a crucial mediator of
mitochondrial apoptotic signalling. Its metabolic role
was confirmed by the presence of Bcl-2 associated
death promotor (BAD) in complex with glucokinase
[43]. Glucokinase has a low affinity for glucose trans-
porter proteins and is purely substrate driven, making it
an ideal substrate sensor to detect glucose in pancreatic
Beta cells and hepatocytes [43]. The activation of glucoki-
nase is driven by phosphorylation of BAD by kinases such
as Akt. The BAD`s pro-apoptotic capacity is inhibited
when bound to glucokinase. However, dephosphorylated
BAD, on dissociation with glucokinase, will bind to Bcl-2/
xl, initiating apoptosis. Furthermore, it has been shown in
some cancers that inhibition of BAD phosphorylation de-
creases cancer cell survival [44, 45].
The glucokinase complex and BAD accumulation will

also promote glycolysis, which favours proliferation and
CSC biosynthesis. However, dephosphorylation of BAD
shifts the balance towards cell death and inhibits the
metabolic signals necessary for high glucose flux to en-
able cell survival regulation [46].
The Bcl-2 protein family impairs the cell’s ability to re-

lease apoptogenic protein cytochrome c from the mito-
chondria by mediation of the balance between cell
survival and apoptosis. It achieves this by binding to the
pro-apoptotic proteins Bcl-2 associated X protein (BAX)
and Bcl-2 homologous antagonist killer [33, 47]. While
the mechanism of Bcl-2 expression in CSC chemo/drug
resistance is still unclear, and it might be due to chromo-
somal translocation or another pathway, it was demon-
strated that leukaemia CD34+ cells expressed Bcl-2 and
Bcl-X [48], and Bcl-2 was highly expressed in breast
CD44+/CD24−/low CSCs [49]. To further understand the
role of the Bcl-2 protein family, it was demonstrated that
Bcl-2 expression in CD133+ human hepatocellular car-
cinoma cells (HCC) can be regulated by the Akt signal-
ling pathways, the inhibitor specific for AKT1 reduced
this cell survival protein expression significantly, indicat-
ing that CD133+ HCC contribute to chemo-resistance
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through preferential activation of AKT/PKB and Bcl-2
cell survival response [50].
One of the mechanisms for CSCs to achieve their

metabolic shift is through modifications of metabolic
and apoptotic roles of Bcl-2 family proteins. The meta-
bolic alterations of this family of proteins may prove po-
tent in increasing cancer cells susceptibility to apoptosis
and affecting tumorigenic metabolic reprogramming.

Targeting drug transporters
CSCs are known to possess a high efflux system that dis-
ables the chemo-therapeutic drugs' activity, resulting in
the formation of highly drug-resistant tumours [31].
CSCs have been found to express several Adenosine tri-
phosphate–binding cassette (ABC) transporters such as
ABCB1/P-gp/MDR1, ABCG2/ BCRP/MXR, and ABCB5
[51, 52]. The ABC transporters are highly dependent on
ATP generation in CSCs; thus, targeting CSC metabol-
ism/glycolysis would lead to depleted ATP production
and inhibition of ABC transporters. ABCG2 is considered
as a high capacity transporter of various substrates includ-
ing chemotherapeutic drugs [53]. With this in mind, it is
has been suggested that ABCG2+ tumour cells can repre-
sent CSCs, which are known for their drug-resistance.
Higher ABCG2 expression has been observed in various
CSCs from lung [54], pancreas [55], and liver [56], and is
co-expressed with CD133 in melanoma and pancreatic
cancer cell lines [57, 58]. It is suggested that ABCG2
expression is upregulated by hypoxia via hypoxia-
inducible transcription factor complex HIF-1α and HIF-
2α signalling [59].
ABCB1/ P-glycoprotein (P-gp) /MDR1 are known to

be expressed in the majority of drug resistant tumours.
Being a product of the multidrug resistance (MDR1)
gene, it acts as an ATP-dependent efflux pump to vari-
ous anti-cancer drugs [60]. CSCs derived from pancre-
atic tumour cells have higher expression of ABCB1 and
ABCG2 [61]. Furthermore, the first generation inhibitors
(FGI) verapamil and PSC833 were unable to efficiently
inhibit mitoxantrone efflux in leukaemic CSCs, showing
that high expression of ABCB1 would lead to the devel-
opment of chemo-resistant cells [62]. Second generation
inhibitors (SGI) were structurally modified for more po-
tency, low cell toxicity, and higher specificity, and in-
clude dexverapamil [63] and Valspodar (PSC833) [64].
Another SGI, PSC833, showed higher potency compared
to the FGI`s, although this is also an inhibitor of cyto-
chrome P-450 and caused drug-drug interaction associ-
ated with anti-cancer drugs [65]. Third generation
inhibitors (TGI) utilise nano-molar concentrations to
have more potency at reversing MDR compared to TGI
and SGI. Zosuquidar (LY3359) [66], an oral P-gp inhibi-
tor used in treating acute myeloid leukaemia, signifi-
cantly increases the uptake of daunorubicin, idarubicin,

and mitoxantrone [67]. Another inhibitor, Tariquidar [68],
which is used at very low concentrations (25–80 nM), has
a high P-gp affinity that inhibits its ATPase activity [69].
Although it has been used as a potent P-gp inhibitor in
clinical trials [70], recent studies have shown that Tariqui-
dar is both a substrate and inhibitor of P-gp, depending
on its in-vivo dosage [71]. Fourth generation inhibitors
(FGI) are natural compounds or plant extracts exhibiting
less cytotoxicity and better oral bioavailability. In-vitro
analysis showed MDR reversal of ABC drug transporters
when treated with extracts of Chinese herbal plants such
as flavonoids or stilbenes [72]. Some natural compounds
such as trabectedin, cytarabin, and halaven, have been ap-
proved for clinical use based on their strong MDR reversal
activity by impacting on ABC drug transporters [73–76].
ABCB5β (a half-transporter) has been found in malig-

nant melanoma and breast cancer, and is known to me-
diate doxorubicin resistance [77]. The ABCG5+ cells
represent 2–20 % of the melanoma tumours and have
been shown to successfully recapitulate the tumour in
immuno-deficient mice; however, these tumours were
unable to regenerate ABCG5+ cells, suggesting their lim-
ited stemness capacity [20].
Inhibition of ABC transporters can also cause toxicity to

a patient’s normal stem cells, since these have an enhanced
DNA repair mechanism, particularly bone marrow-derived
stem cells. In addition, ABCG2 and ABCB1 play a pivotal
role in maintaining the blood brain barrier, and interfering
with their normal function could have drastic conse-
quences [78].

Targeting the tumour microenvironment
Tumour progression is due to adaptive cellular re-
sponses such as dormancy, invasiveness, and chemo-
resistance in the tumour metabolic microenvironment
[79]. Adaptive behaviour of CSCs in this heterogeneous
microenvironment is one of the characteristics of CSCs
[80]. The tumour microenvironment plays a pivotal role
in cancer cell progression, particularly for CSCs, and it
mostly involves hypoxia, nutrition, and low pH [81].
Hypoxia in the tumour microenvironment allows pro-

angiogenic factors to stimulate new vessel growth within
the solid tumour, although the vessels tend to be imma-
ture and exhibit poor perfusion [82]. Hypoxia, due to its
spatial and temporal heterogeneity in tumours, is difficult
to treat [83]. The hypoxic response within the microenvir-
onment is regulated by Hypoxia inducible transcription
factors, HIF-1α/ HIF-2α. The migration, glycolytic, angio-
genic, and cell survival pathways constitute the transcrip-
tion targets of HIF1α [84]. Hence, targeting HIF1α is a
potential therapy for cancer treatment.
In hypoxic stress, the endoplasmic reticulum (ER) is

inhibited, activating the Unfolder protein response (UPR).
The UPR maintains ER homeostasis and its disruption
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initiates apoptosis. Aberrant activation by the UPR in the
absence of the two ER membrane proteins PERK (PKR-
like ER kinase) and IRE-1 (inositol-requiring) results in in-
creased hypoxia and reduced growth rates [85, 86]. The
UPR is an important cellular response mechanism in can-
cer, playing a role in calcium homeostasis, redox status,
and glucose deprivation within the tumour.
Another potential target within the microenvironment is

mammalian target of rapamycin (mTOR). During cell
stress, nutrient and energy depletion within the solid
tumour, mTOR activates the signalling cascades respon-
sible for metabolism and cell survival mechanisms [87, 88].
The anti-diabetic drug metformin has exhibited potential
anti-tumour activity; it reduces blood glucose levels,
thereby inhibiting gluconeogenesis, and initiates AMPK
(AMP-activated protein kinase) activation [89]. AMPK
regulates the mTOR activity through activation of the tu-
berous sclerosis protein 1 complex (TSC1/2) [90].
The microenvironment of tumours is more acidic

(pH 6.5–6.9) compared to normal tissues (pH 7.2–7.5),
resulting in tumours having poor vascular perfusion and
increased glycolytic flux [91, 92]. Knowing that tumour
invasiveness is more active in an acidic microenviron-
ment [93, 94], manipulating the tumour microenviron-
ment pH by orally distributed systemic buffers is an
effective way to increase the extracellular pH of tumours
[95, 96].

Targeting glycolytic enzymes to reduce
chemo-resistance in CSCs
Most cells satisfy their energy demands through glucose
catabolism, which is subject to complex regulation. To in-
hibit glucose catabolism through the central pathway of
glycolysis, various glycolytic enzymes or transporters must
be targeted such as GLUT 1 - 4 [10], hexokinase [97],
pyruvate kinase M2, and lactate dehydrogenase A [98].
Cancer cells have the ability to alter their metabolism in

order to fulfil bioenergetic and biosynthetic requirements.
The extracellular environment can be acidified by what is
known as the ‘Warburg effect’ (a term referring to high
levels of glycolytic pathway flux, even under aerobic con-
ditions). When HIF-1α induces the expression of carbonic
anhydrases, and there is an interaction with extracellular
acidification, the pH ratio between the intracellular and
extracellular environment is altered [99–102].The result-
ant pH shift affects drug absorption within the cell. At the
same time, glycolytic adenosine triphosphate (ATP) pro-
duction and the transporter induced over-expression of
HIF-1α contribute to a decrease in the cytoplasmic reten-
tion of anti-cancer agents [37, 103].

Targeting mitochondrial respiration
The distinct metabolic profile of CSCs has been reported
in a few types of cancer, demonstrating CSCs to be more

dependent on mitochondrial respiration and less on
glycolysis [104]. CSCs prefer oxidative phosphorylation
(OXPHOS) for energy production in lung cancer [105],
glioblastoma [106], pancreatic ductal adenocarcinoma
(PDAC) [104, 107], and leukemic stem cells [108]. The
finding in PDAC cells and PDAC-CSCs demonstrates that
unlike other highly glycolytic tumour cells, the PDAC-
CSCs do not depend on lactate production to generate
NAD+ for anabolic respiration to support continued gly-
colysis and are more dependent on mitochondrial respir-
ation [104]. OXPHOS inhibition impacts directly to the
CSCs’ sphere formation capacity and tumorigenic poten-
tial, indicating extreme sensitivity to mitochondrial func-
tion inhibition [104, 107]. The CSCs’ strong dependence
on mitochondrial electron transport chain activity on
autophagic and catabolic processes makes them more
resistant towards nutrient and environmental factors
[104, 107]. In normal and leukaemic stem cells, a de-
pendence on OXPHOS for energy production demon-
strates the importance of mitochondrial respiration
[108–111]. These findings imply an alternative ap-
proach to target tumour relapse by targeting OXPHOS
in association with oncogenic pathway inhibitors in
pancreatic cancer [104].

Glutaminolysis in cancer metabolism
Cancer cells metabolise glutamine, as well as glucose, to
grow rapidly because it provides the required ATP and es-
sential biomolecules such as proteins, lipids, and nucleic
acids [112]. Glutamine influences the signalling pathways
required for cancer cell proliferation, survival, and metab-
olism through regulation of mitochondrial reactive oxygen
species (ROS) production [113, 114]. Activation of the
PI3-Kinase-Akt pathway results in increased production
of ROS in mitochondria through metabolic pathways
[115]. Glutamine is first converted to glutamate by the
enzyme glutaminase, and then glutamate is converted to
α-ketoglutarate (αKG) by the action of glutamate dehydro-
genase (or an aminotransferase). The rapidly growing
tumour cells use glutamine as a carbon source for energy
production and for the replenishment of TCA cycle inter-
mediates such as pyruvate, oxaloacetate, and αKG to
make up for the constant loss of citrate, which is
exported out of the mitochondria for lipid synthesis. It
has been observed that glutamine withdrawal in cells
with increased c-Myc expression led to the death of the
oncogenic cells [16]. Thus, it can be confirmed that
cancer cells employ glutamine to provide substrates for
the TCA cycle [113, 116]. Further studies have also
demonstrated that the oncogene c-Myc impacts glu-
tamine metabolism, thus stimulating the glutamine
transporters SLC5A1 and SLC7A1 and, as a result, pro-
moting the expression of glutaminase 1 by suppressing
the expression of miR-23A and miR-23B [39].
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These data provide a concrete platform to include glu-
tamine metabolism in cancer as an integral part of can-
cer therapeutic strategies. Glutamine analogues such as
6-diazo-5-oxo-L-norleucine (L-DON), acivicin, and aza-
serine were found to demonstrate anti-cancer activities
but were not formulated into drugs due to their neuro-
and gastrotoxicity [117]. However, it has been shown
that inhibition of glutamine metabolism via L-DON was
able to reduce cancer metastasis in a VM-M3 mouse
model [39, 118]. Zhou et al. [119] performed a prote-
omic analysis in pancreatic ductal adenocarcinoma that
revealed the role of glutamine metabolism in cancer.
They found that the level of glutaminase in the cancer
cells was much higher compared to the normal ductal
cells. In addition, the concentration of other enzymes
such as cytidine triphosphate synthase, guanine mono-
phosphate synthetase, and asparagine synthetase, which
use glutamine as substrates, was found to be elevated in
pancreatic cancer. This indicates that the high utilisation
rates of glutamine by cancer cells are required to satisfy
their need of nitrogen and energy for uninterrupted, fast
growth. Paediatric acute leukaemia has been successfully
treated by L-asparaginase, which catalyses the hydrolysis
of asparagine to aspartic acid. This enzyme is also cap-
able of hydrolysing glutamine to glutamic acid and am-
monia, thus reducing blood glutamine levels [39].
Histone deacetylase (HDAC) inhibitors such as phe-

nylbutyrate have been used pharmacologically to inhibit
the invasive properties of breast and prostate cancer by
inducing apoptosis and depleting the blood glutamine
levels [120, 121]. It is generally used to treat hyperam-
monemia in urea cycle disorders, but it also brings down
the level of glutamine in the plasma by forming a conju-
gate and thus helps curb tumour growth [122]. The glu-
tamine transporters SLC1A5 (ASCT2) and SLC1A7,
which are over-expressed in various human cancers such
as colon, liver, colorectal adenocarcinomas, glioblastoma
multiforme, and melanoma, have been attractive targets
due to their role in cell survival signalling and also being a
major source of glutamine delivery [123]. IL-γ-glutamyl-p-
nitroanilide has been shown to inhibit SLC1A5 (ASCT2)
and cause autophagy in cancer cells [39, 116]. A chemical
compound termed 968 exhibited anti-glutaminase activity,
which in turn suppressed the oncogenic transformation by
c-Myc via down regulation of miR-23, which has been
seen in prostate cancer and human B-cell lymphoma
[39]. Another compound, Bis-2-(5-phenylacetamido-1,
2, 4-thiadiazol-2-yl) ethyl sulphide, also exhibited in-
hibitory effects on glutaminase, thus repressing glu-
tamine availability to the cancer cells [117]. Ongoing
and future work would aim at presenting a more de-
tailed picture of glutamine metabolism and its in-
volvement in cancer, which would help develop safe
and effective glutamine inhibitors.

Conclusion
The targeting of CSCs is emerging as a novel therapy to
eradicate the progression of various cancers. The ineffi-
ciency of traditional anti-cancer therapies lay the step-
ping stone for studying the metabolism of cancer cells
and the pathways controlling and regulating their
growth and proliferation, and converting them into for-
midable treatment options. Targeting the special meta-
bolic traits of CSCs would enable the basis for the
development of new therapeutic strategies to inhibit the
bulk of the tumour. Clinically, targeting the CSCs resist-
ant towards therapy and metastasis would enable long
term disease free survival for the patients.
Though, drug development for CSC metabolism is

gaining wide interest, it is still controversial issue as
there are studies contradicting the glycolytic phenotype
of CSC and oxidative state of CSCs. On the other hand,
cancer cell metabolism has emerged to be one of the
most fascinating and promising areas in cancer therapy
research. The current research focuses on trying to
understand the metabolic demands and profile of cancer
cells, and design drugs accordingly in order to add a
new exciting chapter to cancer treatment. Also, drugs
targeting cancer metabolism can be employed for mul-
tiple cancers, which can possess a broad spectrum of ac-
tivity, and are indeed under clinical trials that will likely
result in new treatment options in the future [124]. Des-
pite the limited research on the role of metabolism in
CSCs and their ability to self-renew, tumour initiation, dif-
ferentiation capacity, chemo-resistance and survive ther-
apy, targeting CSCs metabolism holds great promise in
translating cancer treatments. Though, combinatorial
treatments involving both standard chemotherapeutic
drugs and chemo-sensitizing agents on CSCs would prob-
ably be the most efficient CSC-targeted therapy (Fig. 1).
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