2,089 research outputs found

    Disinterested Malevolence as an Actionable Wrong

    Get PDF

    Disinterested Malevolence as an Actionable Wrong

    Get PDF

    Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Müller, 1776

    Get PDF
    The aim of this work was to quantify the intensity of sediment mixing induced by the gallery-diffusor (functional bioturbation group) Hediste diversicolor as a function of density, using particles tracers (luminophores). In order to assess the impact of density on sediment reworking, a 1-D model was used to obtain sediment reworking coefficients such as Db (biodiffusion-like) and r (biotransport). Densities used in this experiment corresponded to population densities observed in the sampling area (Saint-Antoine Canal, Gulf of Fos, France): 144, 288, 577, 1153 indiv/m2. At first, results showed that neither luminophore maximum burying depth nor the more marked tracer accumulation areas were influenced by density. Thus density did not seem to have any influence on size of galleries or complexity of structure. Then, density-dependent relations with Db (biodiffusion-like mixing) and r (biotransport) were highlighted with an observed process intensity rate twice as high at highest worm density. On the other hand, Db and r per capita coefficients were negatively influenced by density. Db and r per capita at highest density were equal to ∼20% of individual Db and r obtained at the lowest density. Finally, this study showed the importance of density which appears to be a key parameter in the functioning of the sedimentary ecosystem

    Analog readout for optical reservoir computers

    Full text link
    Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed an analog readout suitable for time-multiplexed optoelectronic reservoir computers, capable of working in real time. The readout has been built and tested experimentally on a standard benchmark task. Its performance is better than non-reservoir methods, with ample room for further improvement. The present work thereby overcomes one of the major limitations for the future development of hardware reservoir computers.Comment: to appear in NIPS 201

    Benthic macrofauna and sediment reworking quantification in contrasted environments in the Thau Lagoon

    Get PDF
    As part of the Microbent-PNEC Program: ‘‘Biogeochemical processes at the wateresediment interface in eutrophicated environment’’, the aim of this work was to specifically investigate and quantify the relationships between macrobenthos and sediment reworking in the Thau Lagoon in order to provide information on the potential contaminant distribution and movements at the wateresediment interface. In order to achieve this, three cores were sampled at two stations (in the central part of the Thau Lagoon and near the shellfish farming zone) in the Thau Lagoon, in December 2001, April 2002, August 2002, January 2003 and May 2003. On the basis of quantification of macrobenthos and sediment reworking, evidence is provided of: (1) similar sediment mixing intensities for different species composition at the two stations; (2) the major role of functional bioturbation groups (e.g., biodiffusors and gallery-diffusors) modulated by seasonal variability on sediment mixing; (3) an increase of intensity in summer suggesting potentially different patterns of redistribution, bioaccumulation and chemical fate (e.g., speciation) of deposited contaminants

    High performance photonic reservoir computer based on a coherently driven passive cavity

    Full text link
    Reservoir computing is a recent bio-inspired approach for processing time-dependent signals. It has enabled a breakthrough in analog information processing, with several experiments, both electronic and optical, demonstrating state-of-the-art performances for hard tasks such as speech recognition, time series prediction and nonlinear channel equalization. A proof-of-principle experiment using a linear optical circuit on a photonic chip to process digital signals was recently reported. Here we present a photonic implementation of a reservoir computer based on a coherently driven passive fiber cavity processing analog signals. Our experiment has error rate as low or lower than previous experiments on a wide variety of tasks, and also has lower power consumption. Furthermore, the analytical model describing our experiment is also of interest, as it constitutes a very simple high performance reservoir computer algorithm. The present experiment, given its good performances, low energy consumption and conceptual simplicity, confirms the great potential of photonic reservoir computing for information processing applications ranging from artificial intelligence to telecommunicationsComment: non

    Peter L. Duport wrote to General Jackson, September 26, 1794

    Get PDF
    Peter L. Duport in Boston wrote that General Jackson paid in full to Master Knox, addressed to Hingham. Peter Duport acknowledged the receipt of two pounds sixteen shillings from General Jackson. People included: Master Knox. Places included: Boston, Hingham.https://digitalcommons.kean.edu/lhc_1790s/1446/thumbnail.jp

    Effect of the lattice misfit on the equilibrium shape of strained islands in Volmer-Weber growth

    Full text link
    We have studied the effect of the misfit on the equilibrium shape of three-dimensional pyramidal islands grown on a foreign substrate in the case of incomplete wetting (Volmer-Weber mode of growth). We have found that tensile islands have smaller aspect ratios compared with compressed islands owing to its better adhesion to the substrate. The average strains of consecutive layers decrease faster with thickness in compressed than in tensile islands. The strains decrease rapidly with thickness, with the consequence that above a certain height, the upper layers of the pyramid become practically unstrained and does not contribute to a further reduction in the upper base. As a result, the truncated pyramids are not expected to transform into full pyramids. Our results are in good agreement with experimental observations in different systems.Comment: 6 pages, 7 figures. Accepted version, minor change

    ApoFnr binds as a monomer to promoters regulating expression of enterotoxin genes of Bacillus cereus.

    Get PDF
    International audienceBacillus cereus Fnr is a member of the Crp/Fnr (cAMP-binding protein/fumarate nitrate reduction regulatory protein) family of helix-turn-helix transcriptional regulators. It is essential for the expression of Hbl and Nhe enterotoxin genes independently of the oxygen tension in the environment. We studied aerobic Fnr binding to target sites in promoters regulating the expression of enterotoxin genes. B. cereus Fnr was overexpressed and purified as either a C-terminal His-tagged (FnrHis) fusion protein or an N-terminal fusion protein tagged with the Strep-tag (IBA BioTAGnology) (StrepFnr). Both recombinant Fnr proteins were produced as apoforms (clusterless) and occured as mixtures of monomers and oligomers in solution. However, apoFnrHis was mainly monomeric, while apoStrepFnr was mainly oligomeric, suggesting that the His-tagged C-terminal extremity may interfere with oligomerization. The oligomeric state of apoStrepFnr was dithiothreitol sensitive, underlining the importance of a disulphide bridge for apoFnr oligomerization. Electrophoretic mobility shift assays showed that monomeric apoFnr, but not oligomeric apoFnr, bound to specific sequences located in the promoter regions of the enterotoxin regulators fnr, resDE and plcR and the structural genes hbl and nhe. The question of whether apoFnr binding is regulated in vivo by redox-dependent oligomerization is discussed

    Crystal growth and elasticity

    Full text link
    The purpose of this paper is to review some elasticity effects in epitaxial growth. We start by a description of the main ingredients needed to describe elasticity effects (elastic interactions, surface stress, bulk and surface elasticity, thermodynamics of stressed solids). Then we describe how bulk and surface elasticity affect growth mode and surface morphology by means of stress-driven instability. At last stress-strain evolution during crystal growth is reported.Comment: 12 page
    corecore