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Abstract

As part of the Microbent-PNEC Program: ‘‘Biogeochemical processes at the wateresediment interface in eutrophicated environment’’, the aim

of this work was to specifically investigate and quantify the relationships between macrobenthos and sediment reworking in the Thau Lagoon in

order to provide information on the potential contaminant distribution and movements at the wateresediment interface. In order to achieve this,

three cores were sampled at two stations (in the central part of the Thau Lagoon and near the shellfish farming zone) in the Thau Lagoon, in

December 2001, April 2002, August 2002, January 2003 and May 2003. On the basis of quantification of macrobenthos and sediment reworking,

evidence is provided of: (1) similar sediment mixing intensities for different species composition at the two stations; (2) the major role of functional

bioturbation groups (e.g., biodiffusors and gallery-diffusors) modulated by seasonal variability on sediment mixing; (3) an increase of intensity in

summer suggesting potentially different patterns of redistribution, bioaccumulation and chemical fate (e.g., speciation) of deposited contaminants.
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1. Introduction

This research is one component of the Microbent-PNEC

Program: ‘‘Biogeochemical processes at the wateresediment

interface in eutrophicated environment’’. The program focuses

on the development of improved understanding and microscale

quantification of reactive processes and contaminant fluxes at

the wateresediment interface and through benthic organisms

in the Thau Lagoon (Mediterranean Sea) where intensive

shellfish farming has been developed (Gangnery et al., 2003).

Investigations focused on (1) biogeochemical processes

(diagenetic filter) that control the environmental settings;

(2) biotic or abiotic processes inducing contaminant transfers

at the wateresediment interface; (3) numerical modeling of

these processes.

All active bioturbation processes such as construction of

biogenic structures, irrigation of burrows, sediment mixing

and production of fecal pellets influence the distribution and

the fate of organic matter and pollutants at the wateresediment

interface and within the sediment (e.g., Lee and Swartz, 1980;

Gérino et al., 1995; Gilbert et al., 1996; Stoeck and Kröncke,

2001). Quality and intensity of sediment reworking generated

by macrofauna are modified by changes in population charac-

teristics, e.g., biomass, density, functional groups (François

et al., 1999; Gérino et al., 1999; Sandnes et al., 2000), and en-

vironmental factors (Mortimer et al., 1999; Orvain and Sauriau,

2002; Ouellette et al., 2004).

The key objective of this study was to quantify the rela-

tionships between macrobenthos and sediment reworking in

two contrasted environments of the Thau Lagoon and bring
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information on the potential contaminant distribution and

movements at the wateresediment interface.

2. Material and methods

2.1. Study site

The study was carried out in the Thau Lagoon, a shallow

75 km2 lagoon located on the French Mediterranean coast

(Fig. 1). The Thau Lagoon is the largest shellfish breeding

area in Europe (Soletchnik et al., 2002) and yearly produces

about 35 000 tons of shellfish (Hamon and Tournier, 1981;

Gangnery et al., 2003). This lagoon is connected to the sea

through the narrow channels of Sète and receives freshwater

mostly from the north shore. The Vène and Pallas rivers are

the major streams representing 43% of the total watershed

(280 km2). The measurements were carried out at two stations:

station C4 (N 43�24.018, E 3�36.703’; w8 m depth), in the

central part of the lagoon and station C5 (N 43�25.994’, E

3�39.657’; w8 m depth), located inside the eastern shellfish

farming zone.

2.2. Sampling and analytical methods

In December 2001, April 2002, August 2002, January 2003

and May 2003, sediments from both stations were collected by

scuba diving using PVC cores (i.d. 10 cm, 30 cm height). Three

sediment cores at each station were incubated in a tank at in situ

temperature under a water flow system allowing three complete

turnovers of respective aerated bottom water each day in each

core. In order to quantify the sediment reworking activity in

the sediments the overlying water was removed and fluorescent

luminophores (2 g; 160e200 mm diameters) were deposited at

the sediment surface (Gérino, 1990). Then, the water flow

system was re-activated.

After nine days of sedimentewater incubation, the sediment

cores were sliced in 0.5-cm layers from 0 to 3 cm depth, and

then in 1-cm-thick sections from 3 cm down to 15 cm depth.

Sediment slices were sieved through a 250 mm mesh to remove

macrofauna (preserved in 4% buffered formaldehyde with Rose

Bengal for species identification) from sediment particles.

Sediments were then freeze-dried, gently crushed to powder

and homogenized. Sediment subsamples were taken for

luminophore counting under UV light using a digital camera

(Olympus C-2500L) and an image analysis software (image J;

http://rsb.info.nih.gov/ij/) (Gilbert et al., 2003).

Part of the intact samples (first sediment layer) was used to

determine sediment granulometry. This was performed with

the Mastersizer diffraction laser granulometer. The method

used was based on the one described byWoolfe andMichibaya-

shi (1995) but without sonicating the samples. Using this instru-

ment, it was possible to measure particle size (<1 mm) of each

sample which was dispersed in water. Samples were measured

with at least 8% obscuration under moderately high pump and

stirrer settings.

During the same sampling times, oxygen penetration depths

weremeasured in situ by polarographic oxygenmicroelectrodes

coupled to a microprofiler (UnisenseÒ) mounted on a tripodal

frame positioned on the sea-floor. Oxygen fluxes were calcu-

lated using the diffusive oxygen uptake or flux (JO2
) at the

SWI following Fick’s First Law. For more information about

oxygen sediment profiling and flux calculation, see Dedieu

et al. (2007).

2.3. Data analysis

2.3.1. Macrofaunal community

Classical analytical and synthetic methods (Clarke and

Warwick, 2001) were used to assess the temporal dynamics

of benthic assemblages at stations C4 and C5. Interpretation

of results was based on faunal data expressed as species rich-

ness, density, dominance and biomass.

Homogenous groups of stations were singled out by cluster

analysis (Primer; Clarke and Warwick, 2001) applied to a

similarity matrix obtained by the coefficients of Sorensen

(Sorensen, 1948) and BrayeCurtis (Bray and Curtis, 1957),

which are, respectively, a qualitative coefficient based on the

presenceeabsence of the species and a quantitative coefficient

based on their dominance.

In order to determine the main factors responsible for the

composition and the structure of the assemblages according

to time, a factorial correspondence analysis (FCA) was carried

out (Benzecri et al., 1973). The advantage of this method is

that both the lines and columns of a contingency table can

be represented on the same projection planes.
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Fig. 1. Sampling site and locations of the two stations in the Thau Lagoon

(station C4 in the central part of the lagoon and station C5 near the shellfish

farming area).



In order to interpret the signification of the different axes,

correlations (Coefficient of Spearman) were calculated from

the results obtained by the FCA, between the ordination of

variables on the adopted axes and the percentages of different

biological indicators present in samples (Vincent, 1981).

These indicators can be either specific to an original assem-

blage (characteristic species) or to one or several grain size

fractions (silt, sand, gravel, etc.). In other cases, they can

mark particular environmental conditions such as sediment in-

stability or pollution (perturbation bio-indicator), or they can

have no particular ecological requirements (wide ecological

range species) (Pérès and Picard, 1964; Picard, 1965; Pearson

and Rosenberg, 1978; Pérès, 1982). The trophic and functional

composition based on the bioturbation mode of assemblages

have been determined using indications provided by Coull

(1977), Fauchald and Jumars (1979), Word (pers. comm.),

and Gérino et al. (2004).

According to Blake and Grassle (1994), organisms for

which the identification was uncertain (e.g., juveniles, anterior

fragments, etc.) were used only for density and biomass mea-

surements and were not included in similarity and multivariate

analysis calculations.

2.3.2. Sediment reworking data modeling

The reactionediffusion type model used in this paper to de-

scribe luminophore redistribution following macrofaunal re-

working is based on the general diagenetic equation (Berner,

1980):

vQ

vt
¼

v

vz

�

Db

vQ

vz

�

þRðQÞ ð1Þ

where Q is the quantity of the tracer, t is the time, z is the

depth, Db is the apparent biodiffusion coefficient, and R(Q)

is the non-continuous displacement of tracer. The term R(Q)

is defined as follows:

0

if0

z10;zif,

;z1zif,

z2z

tzrQ

z2dxtxQ
z1z2

r
x1

(2a–2c)

where z1 and z2 define the upper and lower limits of the tracer

redistribution, x and z are depth variables and r is the biotran-

sport coefficient that is the percentage of tracer that left the

[0, x1] deposit and was redistributed in the [z1, z2] layer. The

redistribution of tracer between z1 and z2 and the disappearance

of tracer from the 0ÿ z1 layer are, respectively, described by

Eqs. (2a) and (2b). Eq. (2c) indicates that no tracer movement

occurs below z2.

This displacement term was originally exemplified in

a model describing gallery-diffusion of macrofaunal rework-

ing (François et al., 2002). This biological reworking process

describes the diffusive-like mixing of particles in the region of

intense burrowing activity and the rapid transport of organic

and inorganic material from the upper sediment layers to the

lower regions of reworking (i.e. ‘biotransport’).

According to the experimental conditions, the following

initial conditions were used:

Qðz;0Þ ¼

�

Q0 if z˛½x1; x2�
0 else

ð3Þ

where [x1; x2] is the tracer deposit layer.

Finally, a zero-flux Neuman boundary condition was

considered:

vQ

vz
ð0; tÞ ¼ lim

z/þN

vQ

vz
ðz; tÞ ¼ 0 ð4Þ

The application of this bioturbation model to tracer redis-

tributions allowed the quantification of two particle mixing

coefficients: an apparent biodiffusion coefficient Db and a bio-

transport coefficient r. The biodiffusion coefficient Db takes

into account the diffusion-like transport due to the activity

of the organisms. We assume that the actual concentration

dependent diffusion of tracers is negligible. The biotransport

coefficient (r) represents a non-local mixing pattern asso-

ciated with a biologically induced transfer of particles from

one place to another in a discontinuous pattern (i.e. a non-

continuous transport; Boudreau, 1986; Meysman et al., 2003).

2.3.3. Analysis of variance

For each station, we studied the temporal changes of macro-

benthic organism densities, biomass, and the sediment rework-

ing coefficients (Db and r), using analysis of variance. As time is

not an independent factor, data were then evaluated using

repeated-measures way ANOVA (Zar, 1998). Bartlett’s test

(a¼ 0.05) was employed to test a priori the homogeneity of

variance. Heteroscedastic data were transformed (square root

transformation for biomass and r, and log transformation for

density and Db) to obtain homogeneity of variances.

3. Results

3.1. Macrofauna

3.1.1. Species richness, density and biomass

For each station, species richness was measured over time

(Fig. 2). Species richness was quite stable over time in station

C4 from 36 (December 2001 and May 2003) to 44 (April

2002, August 2002 and January 2003). On the other hand,

changes in species richness over time were more marked in

station C5, ranging from 21 (May 2003) to 40 (April 2002).

Although species richness was higher in station C4 than in

station C5, their changes over time were similar.

Changes of organism density over time, for both stations,

are shown in Fig. 3. At station C4, densities ranged from

17 244� 2727 (December 2001) to 78 149� 10 702 ind mÿ2

(mean� SD; n¼ 3) (January 2003). At station C5, the lowest

and highest densities measured were 8069� 3388 (January

2003) and 35880� 7391 ind mÿ2 (mean� SD; n¼ 3) (April



2002). The interaction ‘‘stations� time’’ was found significant

(F¼ 14.96, P< 0.001), indicating important dissimilarities in

density of the faunal assemblages between the two stations.

The total community wet biomass, as presented in Fig. 4, var-

ied between 200 and 500 wet g mÿ2 at station C4. On the other

hand, it was less stable over time at station C5 showing extreme

values, respectively, in April 2002 (916� 497 wet g mÿ2) and

May 2003 (63� 37 wet g mÿ2) (mean� SD; n¼ 3). Significant

differences (ANOVA) in biomass were found with time

(F¼ 7.22, P< 0.01) but not between stations probably due to

high spatial variability between replicates within stations.

3.1.2. Affinity of the assemblages

From a qualitative point of view, clusters obtained from

Sorensen similarity indicate three groups of samples (Fig. 5;

top). The first and second groups are, respectively, composed

of December 2001, January 2003 and May 2003 and of April

2002 and August 2002 station C5 samples. The third group

corresponds to station C4 samples, showing a different species

composition between the two stations. The strong similarity

(close to 60%) inside the third group of station C4 character-

izes a low change in species composition with time. On the

other hand, for station C5, similarities lower than 40% inside

the first group and between the first and second group show

a marked variability in species composition with time.

From a quantitative point of view, the cluster patterns

resulting from BrayeCurtis similarity analysis are composed

of five groups of samples (Fig. 5; bottom): (1) C4-December

2001, and C4- and C5-April 2002; (2) C4-August 2002,

-January 2003 and -May 2003; (3) C5-August 2002; (4) C5-

December 2001 and -January 2003; (5) C5-May 2003. The

low intra and inter-group similarities (<50%) demonstrate

a different species structuration both within stations and over

time (Table 1).

Assemblages being different between the two stations, the

following analyses of stations C4 and C5 have been separated.

3.1.3. Relation between macrofauna and environmental

factors

At station C4, the factorial correspondence analysis was

carried out on a contingency table crossing 78 species against

15 samples. The first three axes explain 69% of the total data

variability (axis 1¼ 42%, axis 2¼ 14%, axis 3¼ 12%). The

results are given in Figs. 6 and 7, where the plotted projection

plane is illustrated by the factorial planes IeII and IeIII, of all

the samples and species presenting the strongest absolute and

relative contributions.
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The first axis separates essentially December 2001 and

April 2002 samples located on the negative side of the first

axis from the January 2003 and May 2003 samples (Figs. 6

and 7). One notes a significant positive correlation between

the ordination of the variables along axis 1 and the percentage

of surface deposit feeders (r¼ 0.96) and a negative correlation

with the percentage of sub-surface deposit feeders present in

the different samples (r¼ÿ0.84).

Axis 2 contrasts December 2001 and August 2002 samples

and one April 2002 sample with the other samples (Fig. 6). No

significant correlation was evidenced. The species contributing

to the creation of the second axis, however, are essentially vag-

ile species, with suspension feeders dominant in April 2002

samples compared to the other samples. Moreover, in April

2002, the highest biomasses measured for similar organism

densities to December 2001 and August 2002 indicate a mature

condition of the community specifically in April 2002.

Axis 3 contrasts more particularly the August 2002 samples

and one May 2003 sample with the other samples (Fig. 7). Sig-

nificant correlations exist between the ordination of variables

along the third axis and (1) the percentage of tolerant muddy

species (r¼ÿ0.93), and (2) the percentage of particle fraction

between 4 and 63 mm (r¼ 0.77). The increase in tolerant

muddy species, which can develop when only a small fraction

of silt is present, associated with a decrease of silt along the

third axis demonstrates the influence of the granulometry

changes on the assemblage dynamics.

At station C5, the factorial correspondence analysis was

carried out on a contingency table crossing 61 species against

15 samples. The first three axes explain 49% of the total data

variability (axis 1¼ 25%, axis 2¼ 16%, axis 3¼ 7%). The

first axis separates essentially May 2003 samples located on

the negative side of the first axis from the others (Figs. 8

and 9). One can note significant negative correlations between

the ordination of the variables along axis 1 and the percentage

of perturbation bio-indicators (r¼ÿ0.99), and the percentage

of surface deposit feeders (r¼ÿ0.84), but a positive correla-

tion with the percentage of suspension feeders present in the

different samples (r¼ 0.84). This first axis is especially

marked by a perturbation factor.

Axis 2 contrasts the December 2001 samples located on the

negative side of the axis essentially from April 2002 and May

2003 samples (Fig. 8). A negative correlation is apparent be-

tween the ordination of variables along the second axis and

(1) the percentage of minuticolous species (r¼ÿ0.80) and

(2) the percentage of silt between 4 and 63 mm (r¼ÿ0.85).

Minuticolous species are more particularly present in sub-

strates presenting silt or fine sand without coarse sand or

gravel (Picard, 1965). The distribution of samples along the

second axis could be related to a change in the granulometry

distribution with time marked by the presence, in April 2002

and May 2003, of coarser particles in the surface layer com-

pared to December 2001.

Axis 3 contrasts the August 2002 and May 2003 samples

located on the negative side of the axis with the other sam-

ples (Fig. 9). One notes a significant negative correlation

(r¼ÿ0.70) between samples and the dominant sedimentary

fraction. In August 2002 and May 2003, higher proportions

of sand were measured in the sediments compared to Decem-

ber 2001, April 2002 and January 2003. Moreover, in August

2002, more species characteristic of muddy sand in sheltered

areas and fine sand assemblages were found in the sediments

showing a flourishing state of the community at this time.

Again, the distribution of samples along this axis could be

related to a change in the granulometry distribution with

time.

3.2. Sediment reworking

3.2.1. Tracer profiles

More than 99% of the deposited luminophores were detected

within the first 5 cm. From 1.1� 0.7% to 52.3� 25.6%
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Table 1

Dominant and subdominant species (Sanders et al., 1980) in the central part of the Thau Lagoon (station C4) and near the shellfish farming zone (station C5), for the different sampling times. Dom.: dominance

(%); Den.: density (ind mÿ2); class (C: Crustacean, M: Mollusc, O: Oligochaeta, P: Polychaeta)

December 2001 April 2002 August 2002 January 2003 May 2003

Class Species Dom. Den. Class Species Dom. Den. Class Species Dom. Den. Class Species Dom. Den. Class Species Dom. Den.

Station C4

Dominant O Tubificidae

ind.

18.7 3218 C Microdeutopus

anomalus

13.2 3122 P Sphaerosyllis

hystrix

25.92 8502 P Exogone

gemmifera

39.2 30 597 P Sphaerosyllis

hystrix

37.6 16 235

Subdominant P Paradoneis

lyra

16.2 2786 O Tubificidae ind. 8.9 2113 P Mediomastus

californiensis

12.9 4227 P Sphaerosyllis

hystrix

30.4 23 728 P Exogone

gemmifera

22.3 9606

P Staurocephalus

rudolphi

11.1 1921 P Exogone

gemmifera

7.3 1729 P Prionospio

malmgreni

12.3 4035 P Prionospio

malmgreni

6.8 5284 P Mediomastus

californiensis

7.3 3170

P Exogone

gemmifera

9.5 1633 P Paradoneis lyra 6.5 1537 P Paradoneis lyra 8.1 2642 P Mediomastus

californiensis

4.7 3650 P Prionospio

malmgreni

7 3026

P Sphaerosyllis

hystrix

6.1 1057 P Staurocephalus

rudolphi

6.3 1489 P Staurocephalus

rudolphi

6.9 2258 P Pseudoleiocapitella

fauveli

6 2594

P Magalia

perarmata

4.8 817 P Sphaerosyllis

hystrix

5.5 1297 P Paraleiocapitella sp. 4.1 1345

M Venerupis

aurea

4.8 817 C Ampelisca

typica

5.1 1201

M Abra alba 4.9 1153

P Tharyx

multibranchii

4.7 1105

M Loripes lacteus 4.5 1057

P Grubea limbata 4.3 1009

P Heteromastus

filiformis

4.1 961

Station C5

Dominant P Tharyx

multibranchii

28.7 4083 P Exogone

gemmifera

15.1 5428 P Modiolus

adriaticus

10.1 1009 P Capitella sp.5 29.8 2402 P Capitella

capitata

29.2 6484

P Prionospio

malmgreni

10.1 1009 P Exogone

gemmifera

23.2 1873 P Capitella sp.3 27.7 6148

Subdominant P Capitella sp.5 25 3554 O Tubificidae ind. 12.9 4611 P Sphaerosyllis

hystrix

9.6 961 O Tubificidae ind. 11.9 961 P Staurocephalus

rudolphi

13.4 2978

P Armandia

cirrosa

13.2 1873 C Tana€ıs cavolinii 12.6 4515 M Loripes lacteus 9.1 913 P Capitella sp.3 9.5 769 P Capitella sp.5 11.5 2546

P Capitella sp.4 4.7 672 P Microdeutopus

anomalus

6.7 2402 P Capitella sp.5 7.2 720 C Ampelisca

typica

5.4 432 C Ampelisca

typica

4.1 913

P Mediomastus

californiensis

4.1 576 P Capitella sp.3 5.4 1921 P Tharyx

multibranchii

6.7 672

P Capitella sp.5 5 1777 M Venerupis aurea 6.7 672

P Notomastus

latericeus

5 1777 C Iphinoe tenella 5.8 576

M Abra alba 4.8 480

P Magalia

perarmata

4.8 480



(mean� SD, n¼ 3) of tracers were buried below the sediment

surface layer, with the highest values measured in August

2002 for both stations (Fig. 10). Luminophore distributions

exhibited exponentially decreasing profiles from the surface

sediment down to 2 cm depth followed by deeper particle

burying. For each station, the tracer maximum burying depth

constantly variedwith time (5e14.5 cm depth) without showing

any evident time pattern.
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1 in December 2001.
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3.2.2. Sediment reworking coefficients

For both stations, the quantification of sediment reworking

activity showed that the mixing of deposited tracers in the sed-

imentary column could be explained by both continuous (Db)

and non-continuous transport (r). MeanDb ranged, respectively,

at stations C4 and C5, between 0.7 (April 2002) and 2.9 (August

2002) cm2 yÿ1, and between 0.5 (December 2001) and 3.1

(August 2002) cm2 yÿ1 (Fig. 11A). The highest r values were

also measured in August 2002 for the two stations (C4:

8.3� 4.7 yÿ1; C5: 11.1� 0.7 yÿ1; mean� SD; n¼ 3) while

the other biotransport coefficients were found to be close in

December 2001, April 2002 and January 2003 and intermediate

in May 2003 (Fig. 11B).

Significant differences in biodiffusive-like transport (Db)

with time (F¼ 8.33, P< 0.001, ddl¼ 4) were highlighted.

This was not the case for non-continuous transport (r). For

both mixing coefficients, no significant differences were found

between the two stations.

4. Discussion and conclusion

4.1. Macrofauna

Both stations are constituted by a classical mixture of

muddy sand in sheltered areas and fine sand assemblages

(Picard, 1965; Guelorget et al., 1994; Deslous-Paoli et al.,

1998). At station C4 (in the central part of the Thau Lagoon),

however, characteristic fine sand species are dominant while

station C5 (near the shellfish farming zone) is dominated by

species characteristic of the muddy sand in sheltered areas.
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Fig. 10. Luminophore depth profiles in sediments from the central part of the Thau Lagoon (C4: full symbol) and near the shellfish farming zone (C5: open sym-

bol), for the different sampling times. Data are expressed in relative percentage of total tracers (mean� SD, n¼ 3).



Cluster analyses (Fig. 5) performed show that from the

qualitative and quantitative points of view, two distinct

populations are present at stations C4 and C5.

Notably, at station C5, populations are affected by the

proximity of shellfish tables, an area which induces an organic

enrichment characterized by the presence of Capitella capi-

tata, Scolelepis fuliginosa and Nereis caudata (Deslous-Paoli

et al., 1998).

Analyses also demonstrate the relative stability of the

populations with time at station C4. On the other hand, the tem-

poral changes are more pronounced at station C5. The factorial

correspondence analyses (FCA) clearly indicate that the quali-

tative and quantitative changes in the population compositions

are linked to different factors taking place both at a large

(lagoon) or local (station) scale.

From December 2001 to May 2003, at both stations, a gen-

eral trend was observed: a change in trophic structure particu-

larly marked by the transition from a mixture of surface and

sub-surface deposit feeder species to a supremacy of surface

deposit feeder species. Changes in trophic structure of the

community with time, and especially the development of

surface feeders generally correlate with surface organic

enrichment (Pearson and Rosenberg, 1978; Desrosiers et al.,

2000).

Regarding local factors, the factorial correspondence

analyses performed (FCA) demonstrate the influence of varia-

tions in granulometry (at both stations) and of a local distur-

bance (May 2003, at station C5) on population temporal

changes. The variations in granulometry can be driven by

hydrodynamic factors, i.e., strong wind events. The local

disturbance at station C5 is characterized by the recent instal-

lation of juvenile Capitella capitata which suggests strong

mortality of the previous population assemblage. In May

2003, the oxygen depletion (Table 2) related to sediment

organic matter content and high temperatures may have in-

duced this mortality. According to porewater profiles, in this

period, station C5 sediments presented a hypereutrophic status

(Mesnage et al., pers. comm.).

4.2. Sediment reworking

Although species composition differed between the two

stations, results have shown that sediment mixing affected by

benthic organisms was similar at both sites for both continuous

and non-continuous transport. This can be explained by taking

into account bioturbation functional groups (i.e., gallery-

diffusors, biodiffusors, upward conveyors, downward conveyors

and regenerators; Gardner et al., 1987; François et al., 1997;

François et al., 2002). BrayeCurtis similarity index based on

a bioturbation group matrix shows that the functional composi-

tion was generally similar between the two stations (Fig. 12).
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Fig. 11. Sediment reworking in sediments from the central part of the Thau

Lagoon (C4: full symbol) and near the shellfish farming zone (C5: open sym-

bol), for the different sampling times. A: biodiffusion coefficient (Db); and

B: biotransport coefficient (r). Values are mean� SD (n¼ 3).

Table 2

Oxygen parameters at the wateresediment interface and bottom water temper-

ature in the central part of the Thau Lagoon (C4) and near the shellfish farming

zone (C5), for the different sampling times. Values are mean� SD for the

oxygen penetration depth

Replicates Oxygen

penetration

depth

(mm)

Oxygen

flux

(mmol mÿ2 dÿ1)

Bottom water

temperature

(�C)

December 2001

Station C4 n¼ 8 3.2� 0.8 15.5 9.6

Station C5 n¼ 7 1.7� 1.0 36.8 9.6

April 2002

Station C4 n¼ 6 3.9� 0.9 11.0 13

Station C5 n¼ 11 1.4� 0.4 39.7 13

August 2002

Station C4 n¼ 2 1.2� 0.0 29.6 23

Station C5 n¼ 12 0.7� 0.2 72.6 23

January 2003

Station C4 n¼ 3 e 8.6 8.5

Station C5 n¼ 13 1.3� 0.4 52.2 8.5

May 2003

Station C4 n¼ 7 0.9� 0.2 30.7 18

Station C5 n¼ 16 0.8� 0.3 87.7 18



This was not the case, however, in January 2003 and May 2003,

where the comparison between stations C4 and C5 either re-

vealed that they came out with different mixing coefficients

or showed a very high variability of sediment reworking activ-

ity, respectively (Fig. 11). In January 2003, the biodiffusors

were the dominant group in station C4 while gallery-diffusors

dominated in station C5 (Table 3). The same distribution was

observed in May 2003, except for one sample from station C4

inwhich gallery-diffusor organisms dominated (45%). This het-

erogeneity between the replicates could explain the observed

variability in sediment reworking.

Sediment mixing analysis also demonstrated, for both sta-

tions, changes in reworking intensity with time. These differ-

ences are mainly due to the increase in reworking observed in

August 2002, as also recorded by Schmidt et al. (2007) using
7Be and 234Th tracers. At that period, reduced oxygen availabil-

ity in the sediments linked to higher seasonal temperatures

(Table 2), may have contributed to more intensive bioirrigation

activity of the organisms in order to enhance oxygen penetration

to deeper sediments (Aller, 1982; Kristensen, 1983; Ouellette

et al., 2004). This water circulation induced by the organism

is known to destabilize surface particles and carry them to the

bottom of the burrow (François et al., 2002). This increase in

sediment reworking was, however, not measured in May 2003

while the temperatures and oxygen conditions were close than

those of August 2002. If the juvenile state of the community

in May 2003 at station C5 (near the shellfish farming zone)

could explain the low mixing rate compared to August 2002,

this was not the case for station C4 (in the central part of the

Thau Lagoon). Again, the difference between these two sam-

pling times can be explained by the bioturbation functional

composition of the communities with an increase of biodiffu-

sors and a decrease of gallery-diffusors inMay 2003with regard

to August 2002 (Table 3).

This result emphasizes the importance of the functional

biodiversity of the communities in the dynamics of sediment

mixing as for the solute exchanges at the wateresediment

interface (Emmerson et al., 2001).

In conclusion, our results have demonstrated that functional

groups assemblage in community and environmental factors

play a major role in the intensity of sediment mixing.

Specifically, within the framework of the Microbent pro-

gram, our work has provided evidence, in the Thau Lagoon,

of a generally similar potentiality of contaminant reworking

within and outside the farming zones. At some periods, how-

ever, sediment mixing intensity may differ between the studied

stations. Sediment reworking has also been found to be vari-

able with time, showing, for instance, an increase of intensity

in summer. These changes in sediment reworking intensity

suggest potentially different redistribution, bioaccumulation

and chemical fate (e.g., speciation) of deposited contaminants.
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Table 3

Percentages of bioturbation functional groups (see Gérino et al., 2004) in each core sampling in the central part of the Thau Lagoon (station C4) and near the

shellfish farming zone (station C5), for the different sampling times

December 2001 April 2002 August 2002 January 2003 May 2003
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Undetermined 0 1.5 0 0 0.4 1.6 0 0.5 0 0 0 0 0.3 0 0.3

Station C5 C51 C52 C53 C51 C52 C53 C51 C52 C53 C51 C52 C53 C51 C52 C53
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Gallery-diffusors 76.5 64.7 87.9 36.2 35.1 25.1 20 42.2 9.7 63.2 44.3 65.6 71.9 81.5 73.6

Undetermined 0 0 1 0.55 0.3 1.9 0 0 0.00 0 0 0 0 0 2.1
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