1,247 research outputs found

    Undecidable Properties of Limit Set Dynamics of Cellular Automata

    Get PDF
    Cellular Automata (CA) are discrete dynamical systems and an abstract model of parallel computation. The limit set of a cellular automaton is its maximal topological attractor. A well know result, due to Kari, says that all nontrivial properties of limit sets are undecidable. In this paper we consider properties of limit set dynamics, i.e. properties of the dynamics of Cellular Automata restricted to their limit sets. There can be no equivalent of Kari's Theorem for limit set dynamics. Anyway we show that there is a large class of undecidable properties of limit set dynamics, namely all properties of limit set dynamics which imply stability or the existence of a unique subshift attractor. As a consequence we have that it is undecidable whether the cellular automaton map restricted to the limit set is the identity, closing, injective, expansive, positively expansive, transitive

    Decidable properties for regular cellular automata

    Get PDF
    We investigate decidable properties for regular cellular automata. In particular, we show that regularity itself is an undecidable property and that nilpotency, equicontinuity and positively expansiveness became decidable if we restrict to regular cellular automata4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    Vital signs monitoring using Ultra Wide Band pulse radar

    Get PDF
    The aim of this work is to describe how to realize a measurement setup to detect target heart and breath rate with the use of Ultra Wide Band (UWB) radar technology. Thanks to UWB wireless capabilities the detection is done contactless just standing still at a given distance dT. Contactless heart and breath rate detection can be achieved with the use of currently available commercial UWB radar devices. This is of interest for intensive-care patient monitoring, home monitoring, fast disease screening and remote vital signs monitoring. Our setup is composed by devices provided by PulsON: two PulsON 220RD UWB radars. We encountered an issue with time synchronization that is very critical in UWB detection techniques and therefore a custom built synchronization algorithm has been developedope

    NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases

    Get PDF
    Enrichment analysis is a widely applied procedure for shedding light on the molecular mechanisms and functions at the basis of phenotypes, for enlarging the dataset of possibly related genes/proteins and for helping interpretation and prioritization of newly determined variations. Several standard and Network-based enrichment methods are available. Both approaches rely on the annotations that characterize the genes/proteins included in the input set; network based ones also include in different ways physical and functional relationships among different genes or proteins that can be extracted from the available biological networks of interactions

    Performance assessment of capture zones generated by PV-powered pump and treat systems

    Get PDF
    Pump and treat (P&T) is a technology that has been extensively used to remove and/or contain contaminated groundwater. Hydraulic containment of contaminants is accomplished by generating capture zones through pumping of groundwater. An appropriate delineation of capture zones is necessary to design an effective P&T system. P&T systems conventionally operate continuously to achieve steady-state capture zones, which require significant amounts of energy. The use of renewable energies to meet power demands of remedial systems may reduce a project\u27s carbon dioxide emissions. The hydraulic effectiveness of a photovoltaic (PV) powered P&T system without energy storage was characterized using data collected at two different remediation sites, a Dry-cleaning Environmental Response Trust Fund site in Rolla, Missouri and the Former Nebraska Ordnance Plant near Mead, Nebraska. A method to estimate hydraulic containment effectiveness of PV-powered P&T systems without energy storage was developed. The performance of a hypothetical PV-powered P&T system that operates both intermittently by assuming that the system does not include an energy storage component and continuously by assuming that system includes a relatively small capacity energy storage component was analyzed using widely available Typical Meteorological Year 3 data. A methodology to estimate capture zone widths for PV-powered P&T systems without energy storage throughout the continental U.S. as a function of solar insolation data, transmissivity, and hydraulic gradient was developed. Maps depicting predicted capture zone widths for specified transmissivity values and a hydraulic gradient were developed. The applicability of the developed methodology was illustrated with two actual sites where groundwater remediation has taken place. --Abstract, page iv

    Correlation Plenoptic Imaging With Entangled Photons

    Full text link
    Plenoptic imaging is a novel optical technique for three-dimensional imaging in a single shot. It is enabled by the simultaneous measurement of both the location and the propagation direction of light in a given scene. In the standard approach, the maximum spatial and angular resolutions are inversely proportional, and so are the resolution and the maximum achievable depth of focus of the 3D image. We have recently proposed a method to overcome such fundamental limits by combining plenoptic imaging with an intriguing correlation remote-imaging technique: ghost imaging. Here, we theoretically demonstrate that correlation plenoptic imaging can be effectively achieved by exploiting the position-momentum entanglement characterizing spontaneous parametric down-conversion (SPDC) photon pairs. As a proof-of-principle demonstration, we shall show that correlation plenoptic imaging with entangled photons may enable the refocusing of an out-of-focus image at the same depth of focus of a standard plenoptic device, but without sacrificing diffraction-limited image resolution.Comment: 12 pages, 5 figure

    Diffraction-limited plenoptic imaging with correlated light

    Full text link
    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NA) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: the increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this paper, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate to maintain the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of the promising applications of plenoptic imaging.Comment: 10 pages, 10 figure

    Global Stability and Plus-Global Stability. An Application to Forward Neural Networks

    Get PDF
    A necessary and sufficient condition for a discrete dynamical system to be globally stable and plus-globally stable are first established in Section 2. The V-condition is introduced and Theorems 3.5 and 3.7 are presented in Section 3. The two theorems link the V-condition to the most relevant properties of globally stable and plus-globally stable discrete dynamical systems. In Section 4 we provide a simple application to a convergence problem for forward neural networks

    Estimage: a webserver hub for the computation of methylation age

    Get PDF
    Methylage is an epigenetic marker of biological age that exploits the correlation between the methylation state of specific CG dinucleotides (CpGs) and chronological age (in years), gestational age (in weeks), cellular age (in cell cycles or as telomere length, in kilobases). Using DNA methylation data, methylage is measurable via the so called epigenetic clocks. Importantly, alterations of the correlation between methylage and age (age acceleration or deceleration) have been stably associated with pathological states and occur long before clinical signs of diseases become overt, making epigenetic clocks a potentially disruptive tool in preventive, diagnostic and also in forensic applications. Nevertheless, methylage dependency from CpGs selection, mathematical modelling, tissue specificity and age range, still makes the potential of this biomarker limited. In order to enhance model comparisons, interchange, availability, robustness and standardization, we organized a selected set of clocks within a hub webservice, EstimAge (Estimate of methylation Age, http://estimage.iac.rm.cnr.it), which intuitively and informatively enables quick identification, computation and comparison of available clocks, with the support of standard statistics
    • …
    corecore