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Abstract. Cellular Automata (CA) are discrete dynamical systems and an abstract
model of parallel computation. The limit set of a cellular automaton is its maximal topo-
logical attractor. A well know result, due to Kari, says that all nontrivial properties of
limit sets are undecidable. In this paper we consider properties of limit set dynamics, i.e.
properties of the dynamics of Cellular Automata restricted to their limit sets. There can
be no equivalent of Kari’s Theorem for limit set dynamics. Anyway we show that there is
a large class of undecidable properties of limit set dynamics, namely all properties of limit
set dynamics which imply stability or the existence of a unique subshift attractor. As a
consequence we have that it is undecidable whether the cellular automaton map restricted
to the limit set is the identity, closing, injective, expansive, positively expansive, transitive.

Introduction

Cellular Automata (CA) are discrete dynamical systems and, at the same time, an
abstract model of parallel computation. Every cellular automaton has a finite description
in terms of a finite block mapping called local rule. A general problem for CA is to determine
what are the properties which are algorithmically decidable/undecidable given the local rule.

The limit set ΩF of a cellular automaton (AZ, F ) is the set of all configurations which
occur after arbitrarily long iterates of the CA map, i.e. x ∈ ΩF if and only if ∀n ∈
N, F−n(x) 6= ∅. The limit set is the maximal topological attractor of a cellular automaton
(then it is always nonempty and closed) and it is fundamental to understand the long-term
behavior of such systems. Kari’s Theorem [Kari94] says that all nontrivial properties of limit
sets are undecidable. This implies, for example, that we cannot decide algorithmically if
some given configuration is in the limit set or not and we cannot even decide if some given
word is contained in some configuration of the limit set. Kari’s undecidability theorem
uniquely regards properties of the configurations contained in the limit set, but it does not
include properties of the dynamics of Cellular Automata restricted to their limit set. The
motivation of this work is to try to understand what are the undecidable properties of the
limit set dynamics, i.e. properties of the dynamical systems (ΩF , F ). It is easy to find
simple examples of nontrivial decidable properties of F : ΩF → ΩF which imply that Kari’s
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Theorem cannot be extended to whole limit set dynamics. Anyway, we can show that there
is a large and interesting class of properties of F : ΩF → ΩF which are undecidable. For
instance, we show that any property of limit set dynamics which implies stability or the
existence of a unique subshift attractor is undecidable. Stated in another way, we obtain
that any decidable property of limit set dynamics must be a property of some unstable
cellular automaton with at least two subshift attractors. As a consequence we show that it
is not possible to decide algorithmically whether the cellular automaton map restricted to
the limit set is the identity, closing, injective, expansive, positively expansive and transitive.

The paper is organized as follows. In Section 1 we provide the basic background in
Symbolic Dynamics and Cellular Automata needed to understand the rest of the paper. In
Section 2 we formally define what properties of limit sets are and we show some preliminary
results. In Section 3 we discuss our main results. Section 4 is devoted to concluding remarks.

1. Preliminaries

1.1. Symbolic Dynamics

In this section we review only those notions which are strictly necessary to understand
our proofs. See [LM95] for a complete introduction to Symbolic Dynamics.

Let A be a finite alphabet with at least two elements. We denote by An the set of words
of length n over A, by A∗ = ∪n∈NAn the set of words over A and by AZ the set of doubly
infinite sequences (xi)i∈Z of symbols xi ∈ A. We denote by x[i,j] ∈ Aj−i+1 the subword

xixi+1...xj . We use the shortcut w < x to say that w ∈ A+ is a subword of x ∈ AZ.

Define a metric d on AZ by d(x, y) = 2−n where n = min{|i| | xi 6= yi}. The set
AZ endowed with metric d is a compact metric space. For u ∈ A∗ and i ∈ Z, denote by
[u]i = {x ∈ AZ | x[i,i+|u|−1] = u} a cylinder set. For a lighter notation, we will refer to the

cylinder set [u]i simply by [u]. A cylinder set is a clopen (closed and open) set in AZ. Every
clopen set in AZ is a finite union of cylinder sets.

The shift map σ : AZ → AZ is defined by σ(x)i = xi+1. The shift map is continuous and
biiective on AZ. The dynamical system (AZ, σ) is called full shift. A shift space or subshift

is a non-empty closed subset Σ ⊆ AZ which is strongly shift invariant, i.e. σ(Σ) = Σ.
We will usually denote the shift dynamical system (Σ, σ) simply with Σ. A subshift Σ is
a zero-dimensional space, i.e. for every two different points x, y ∈ Σ there exists disjoint
clopen sets U, V ⊂ Σ such that x ∈ U, y ∈ V .

We denote by Ln(Σ) = {w ∈ An | ∃x ∈ Σ, w < x} the set of words of length n of
the subshift Σ. The language of Σ is defined by L(Σ) = ∪n∈NLn(Σ). Any subshift Σ is
completely determined by the set of its forbidden words A∗ \ L(Σ). A shift of finite type

(SFT) is a subshift which can be defined by a finite set of forbidden words. Let Σ be a
subshift on alphabet A. We denote by Σk = {x ∈ AZ | ∀i ∈ Z, x[i,i+k) ∈ Lk(Σ)} the SFT

approximation of order k > 0 of Σ. Note that ∀k > 0,Σ ⊆ Σk and that Σk is a SFT since
it is defined by the finite set of forbidden words Ak \Lk(Σ). If Σ is a SFT then there exists
some k > 0 such that ∀k′ ≥ k,Σ = Σk′. We say that the least such k > 0 is the order of
Σ. A generalization of SFTs are sofic shifts. A subshift S is sofic if and only if its language
L(S) is regular. A subshift Σ is mixing if there exists n > 0 such that for all clopen sets
U, V ⊆ Σ, σn(U) ∩ V 6= ∅.
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Let Σ1,Σ2 be subshifts. A factor map F : Σ1 → Σ2 is a continuous, onto, σ-commuting
mapping. A factor map is actually a block code, i.e. F is induced by some k-block mapping

f : Lk
1(Σ1) → L1(Σ2) where k > 0. The mixing and sofic properties are preserved under

factor maps.
A factor map F is right-closing if x, y ∈ Σ, x(−∞,i] = y(−∞,i] and F (x) = F (y) imply

x = y. The definition of left-closing is equivalent. By using a simple compactness argument
it is possible to prove that closing is equivalent to the following condition: ∃n > 0 such that
∀x, y ∈ Σ,∀i ∈ Z if x[i,i+n) = y[i,i+n) and F (x)[i,i+2n] = F (y)[i,i+2n] then xi+n = yi+n. The
closing property imposes strong constraint on the mapping. For example, it is possible to
prove that if Σ is a mixing SFT and F : Σ → Σ is continuous, σ-commuting and closing
then F is onto, i.e. F (Σ) = Σ.

An endomorphism F : Σ → Σ is positively expansive if there exists ǫ > 0 such that for
all distinct x, y ∈ Σ there exists n ∈ N such that d(Fn(x), Fn(y)) > ǫ. If F is invertible
then it is expansive if there exists ǫ > 0 such that for all distinct x, y ∈ Σ there exists n ∈ Z

such that d(Fn(x), Fn(y)) > ǫ. Both expansive and positively expansive endomorphisms of
subshifts must be closing. The map F is transitive, if for any nonempty open sets U, V ⊆ Σ
there exists n ∈ N such that F−n(U) ∩ V 6= ∅. Both expansive and positively expansive
endomorphisms of mixing SFT are transitive.

1.2. Cellular Automata

One-dimensional Cellular Automata (CA) are endomorphisms of full shifts. We denote
CA by pairs (AZ, F ) where F : AZ → AZ is some continuous and σ-commuting function.
The global rule F is a (2r + 1)-block map, i.e. there exists some local rule f : A2r+1 → A
of radius r ≥ 0 such that

∀x ∈ AZ, F (x)i = f(xi−r, ..., xi+r).

It is sometimes useful to extend the local rule to the finite-block mapping

f∗ : Ak → Ak−2r for every k ≥ 2r + 1,

such that

f∗(x1, ..., xk) = f(x1, ..., x2r+1)f(x2, ..., x2r+2)..f(xk−2r, ..., xk).

Our investigation regards properties of the limit behavior of Cellular Automata. To
understand the limit behavior the concept of attractor is fundamental. An attractor is a
nonempty closed set which attracts the orbits of its neighboring points.

Definition 1.1. Let (AZ, F ) be a cellular automaton. The ω-limit of a set U ⊆ AZ with

respect to F is defined by ωF (U) = ∩n>0∪m>nFm(U).

When it is clear from the context, we will denote the ω-limit simply with ω. In zero-
dimensional spaces the following two definitions of attractors are equivalent.

Definition 1.2. Let (AZ, F ) be a cellular automaton. A nonempty closed set Y ⊆ AZ such
that F (Y ) = Y is an attractor of (AZ, F )

1. if ∀ǫ > 0,∃δ > 0 such that ∀x ∈ AZ

d(x, Y ) < δ =⇒ ∀n ∈ N, d(Fn(x), Y ) < ǫ and lim
n→∞

d(Fn(x), Y ) = 0.

2. if and only if Y = ω(U) where U is a clopen F -invariant set, i.e. F (U) ⊆ U .
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A useful property of attractors is that every neighborhood of an attractor contains a
clopen F -invariant set whose ω-limit is the attractor itself. We show the proof for com-
pleteness. We first need a general lemma.

Lemma 1.3. Let (AZ, F ) be a cellular automaton and let U, V ⊆ AZ be clopen sets. Assume

that ∀x ∈ U,∃nx ∈ N such that Fnx(x) ∈ V . Then there exists n ∈ N such that ∀x ∈
U,∃nx ≤ n,Fnx(x) ∈ V .

Proof. For i ∈ N define Xi = {x ∈ U | ∀j ≤ i, F j(x) /∈ V }. Since U, V are clopen it follows
that for every i ∈ N,Xi is clopen and Xi ⊇ Xi+1. Assume that for every i ∈ N,Xi 6= ∅
then, by compactness, X = ∩i∈NXi is nonempty which implies that there exists x ∈ U such
that ∀i ∈ N, F i(x) /∈ V contradicting the hypothesis.

Proposition 1.4. Let (AZ, F ) be a cellular automaton and let Y ⊆ AZ be an attractor.

Then for every ǫ > 0 there is an F -invariant clopen set U ⊆ Bǫ(Y ) such that ω(U) = Y .

Proof. For ǫ > 0, denote Yǫ = Bǫ(Y ). Note that for every ǫ > 0, Yǫ is a clopen set. Choose
some ǫ > 0. By definition, there is some 0 < δ < ǫ such that

x ∈ Yδ =⇒ ∀n,Fn(x) ∈ Yǫ and lim
n→∞

d(Fn(x), Y ) = 0.

Choose some 0 < ǫ0 < δ then there is some 0 < δ0 < ǫ0 such that

x ∈ Yδ0 =⇒ ∀n,Fn(x) ∈ Yǫ0 and lim
n→∞

d(Fn(x), Y ) = 0.

If x ∈ Yδ then lim
n→∞

d(Fn(x), Y ) = 0 so there is some nx ∈ N such that Fnx(x) ∈ Yδ0 .

By Lemma 1.3, there is some n ∈ N such that for every x ∈ Yδ,∃nx ≤ n,Fnx(x) ∈ Yδ0 then
∀x ∈ Yδ, F

n(x) ∈ Yǫ0 ⊆ Yδ. We obtained that there is some n ∈ N such that Fn(Yδ) ⊆ Yδ

then Yδ is Fn-invariant. We now define a clopen set U ⊆ Yǫ which is F -invariant.
Let x ∈ Yδ, since Fn(Yδ) ⊆ Yδ and Yδ is clopen, there is a word w < x such that [w] ⊆ Yδ

and [(f∗)n(w)] ⊆ Yδ (where the length of (f∗)n(w) is greater than 0). In particular, since Yδ

is the union of a finite collection of cylinders, there is a finite set of words w0
1, ..., w

0
k0

such that

Yδ = [w0
1] ∪ ... ∪ [w0

k0
] and [(f∗)n(w0

i )] ⊆ Yδ for 1 ≤ i ≤ k0. By considering iterates of f∗ on

such words we can obtain a sequence of clopen sets U0, U1, .., Un such that F (Uj) ⊆ Uj+1.

Set U0 = Yδ = [w0
1 ] ∪ ... ∪ [w0

k0
] and define the clopen set U1 = ∪k0

i=1([f
∗(w0

i )] ∩ Yǫ) =

[w1
1] ∪ ... ∪ [w1

k1
]. Note that for every i ∈ [0, k0] we have F ([w0

i ]) ⊆ [f∗(w0
i )], F ([w0

i ]) ⊆ Yǫ

and [f∗(w0
i )] ∩ Yǫ is clopen. Then F (U0) ⊆ U1 ⊆ Yǫ. Iterating for j ∈ [1, n] we obtain

the sequence of clopen sets Uj = ∪
kj−1

i=1 ([f∗(wj−1
i )] ∩ Yǫ) = [wj

1] ∪ ... ∪ [wj
kj

] such that

F (Uj−1) ⊆ Uj ⊆ Yǫ. Now define U = ∪n
j=0Uj. We have that U ⊆ Yǫ is clopen, F (U) ⊆ U

and ω(U) = Y .

In the context of Cellular Automata, a particular class of attractors are those attractors
which are also subshifts.

Definition 1.5. Let (AZ, F ) be a cellular automaton. A nonempty closed set Y ⊆ AZ is a
subshift attractor if it is an attractor and if σ(Y ) = Y .

The following two propositions characterize subshift attractors of CA.

Definition 1.6. Let (AZ, F ) be a cellular automaton. We say that a clopen and F -invariant
set U ⊆ AZ is spreading if there exists some k > 0 such that F k(U) ⊆ σ−1(U) ∩ U ∩ σ(U).
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Proposition 1.7. [FK07] Let (AZ, F ) be a cellular automaton and let U ⊆ AZ be a clopen

and F -invariant set. Then ω(U) is a subshift attractor if and only if U is spreading.

Proposition 1.8. [FK07] Let (AZ, F ) be a cellular automaton and let U ⊆ AZ be a clopen

F -invariant spreading set. Then there exists a mixing SFT Σ ⊆ U with the following

properties:

• F (Σ) ⊆ Σ
• W = {[w] | w ∈ Lk(Σ), k is the order of Σ} is clopen and F -invariant

• ω(Σ) = ω(W ) = ω(U).

A cellular automaton has at least one attractor which is called limit set.

Definition 1.9. Let (AZ, F ) be a cellular automaton. The limit set of (AZ, F ) is defined
by ΩF = ∩∞

i=0F
i(AZ) = ωF (AZ).

Note that a configuration x ∈ AZ is in the limit set if and only if for every n ∈ N,
F−n(x) 6= ∅. The limit set is a subshift attractor and it is also the maximal attractor, i.e.
every other attractor is contained in the limit set. The limit set can be the unique attractor.
In particular, if the map is transitive on the limit set then it is the unique attractor (the
converse is not true). An attractor is a minimal attractor if it does not contain any proper
subset which is an attractor. A unique attractor is both maximal and minimal. There is a
very simple class of minimal attractors. We say that a state s ∈ A is spreading if the local
rule has the property f(x1, ..., x2r+1) = s if ∃xi = s. If a cellular automaton has a spreading

state s then the clopen set [s] is F -invariant and spreading and ω([s]) = {...sss....} is a
minimal subshift attractor.

Cellular Automata limit sets received great attention. Here we review just some ba-
sic facts. One question which is still not well understood concerns the class of subshifts
which can be limit sets of CA (see, for example, [Hurd90, Maass95]). The most immediate
distiction is between limit sets of stable and unstable CA. A cellular automaton (AZ, F )
is called stable if there exists some n ∈ N such that Fn(AZ) = ΩF . It is called unstable

otherwise. The limit sets of stable CA are mixing sofic shifts since they are factors of full
shifts. There are sofic subshifts which are limit sets of unstable CA but no limit set of
unstable CA can be a SFT [Hurd90]. It is actually unknown whether a subshift can be the
limit set of both a stable and of an unstable CA. The simplest example of limit set subshift
is the subshift consisting of just one configuration. A cellular automaton whose limit set
is a single configuration is called nilpotent. If a cellular automaton is nilpotent then the
unique configuration in the limit set must be fixed by both σ and F then the automaton
must be stable.

2. Properties of limit sets

An important aspect of CA is that they can be enumerated. Every cellular automaton
is described by its local rule. Local rules are defined by a finite amount of information and,
in particular, for any fixed radius and cardinality of the alphabet there are only finitely
many possible CA local rules.

Choose some enumeration function for CA local rules. We denote by #(AZ, F ) ∈ N the
rule number associated to (AZ, F ). A property P of CA is a collection of CA rule numbers.
A property is called trivial if either all CA have such property or none has. A property P
is decidable whether there exists some algorithm such that, for any given (AZ, F ), it always
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computes if either #(AZ, F ) ∈ P or #(AZ, F ) /∈ P. A subclass of CA properties are, in
particular, properties of the limit sets.

Definition 2.1. A property P is a property of limit sets if and only if the following condition
holds: if #(AZ, F ) ∈ P and (BZ, G) is a cellular automaton such that ΩF = ΩG then
#(BZ, G) ∈ P.

Nilpotency is a property of limit sets. While a property of limit sets is always a property
of CA, the converse is not always true. For example, surjectivity is not a property of the
limit sets since it is easy to construct a surjective CA and a not surjective CA which have
the same limit set. For example, let (AZ, F ) be a surjective CA and let (BZ, G) be such that
B = A ∪ {b} (with b /∈ A) and ∀x ∈ BZ, G(x) = F (x′) where x′ is obtained by substituting
every occurrence of b in x with the symbol a ∈ A. Then G is not surjective and G(BZ) = AZ.

Decidability questions about properties of the limit sets received great attention. One
of the most important undecidability results, due to Kari, is the following one.

Theorem 2.2. [Kari92] Nilpotency is undecidable for CA.

Nilpotency remains undecidable also under the additional condition of a spreading state.
Nilpotency is the basis to prove the undecidability of most of the undecidable properties
of CA. In particular, Kari showed that (the problem to decide) nilpotency is the easiest
problem among all decision problems on the limit sets.

Theorem 2.3. [Kari94] Every nontrivial property of CA limit sets is undecidable.

For example, by Theorem 2.3, every nontrivial property which regards the language
L(ΩF ) is undecidable. Kari’s Theorem does not concern properties of the dynamics of CA
on the limit set. Here we investigate decidability questions about properties of limit set

dynamical systems or properties of limit set dynamics.

Definition 2.4. A property P is a property of limit set dynamics if and only if the following
condition holds: if #(AZ, F ) ∈ P and (BZ, G) is a cellular automaton such that ΩF = ΩG

and F |ΩF
= G|ΩG

then #(BZ, G) ∈ P.

Note that, by definition, properties of limit sets are properties of limit set dynamics
while the converse is not true. It is evident that we cannot have the equivalent of Theorem
2.3 for limit set dynamics. In fact, it is easy to find nontrivial properties of the limit
set dynamical systems which are decidable. Consider, for example, the set of decidable
properties Pn = {#(AZ, F ) | ∃x ∈ AZ, Fn(x) = x}. Since every F -periodic point is
contained in the limit set, all Pn are properties of the limit set dynamics.

In the following section we will show that there is a large class of undecidable properties
of the limit set dynamics. In particular, our main result concerns properties of stable CA
and properties of CA which have a unique subshift attractor. To conclude this section we
show some results related to these properties.

Proposition 2.5. It is undecidable whether a cellular automaton has a unique subshift

attractor.

Proof. Let (AZ, F ) be a cellular automaton with a spreading state s ∈ A. The clopen
set [s] is F -invariant, spreading and ω([s]) = {...ssss...}. If we could decide whether a
cellular automaton has a unique subshift attractor the we could decide if ω([s]) is the
unique attractor of (AZ, F ) and then we could decide if (AZ, F ) is nilpotent or not.
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Proposition 2.6. [Kari94] It is undecidable whether a cellular automaton is stable.

Proof. Assume that we can decide if some cellular automaton is stable or not. We show
that it is possible to decide nilpotency. Let (AZ, F ) be cellular automaton. If (AZ, F ) is
not stable then it is not nilpotent. If it is stable then there exist some n ∈ N such that
Fn(AZ) = ΩF . Then is sufficient to compute all forward images of AZ until we reach the
limit set ΩF and then check if it is a singleton.

It is open the question whether stability is a property of limit sets (i.e. it is unknown
whether there is a subshift which can be limit set both of a stable and of an unstable cellular
automaton). We can show that stability is a property of limit set dynamics. This implies
that, even if there exists a subshift which is both the limit set of some stable and of some
unstable CA, then the dynamics of such automata on their limit sets must be distinct.

Proposition 2.7. Let (AZ, F ) be a cellular automaton. Assume that there is a cellular

automaton (BZ, G) such that ΩF = ΩG and F |ΩF
= G|ΩF

. Then (BZ, G) is stable if and

only if (AZ, F ) is stable.

Proof. Let r be the maximum between the radius of (AZ, F ) and the radius of (BZ, G).
By Proposition 1.4 and Proposition 1.7, there is a clopen, F -invariant spreading set U ⊆
B2−r(ΩF ) such that ωF (U) = ΩF . By Proposition 1.8, there is a mixing SFT Σ ⊂ U ⊆
B2−r(ΩF ) such that F (Σ) ⊆ Σ and ωF (Σ) = ΩF . We show that L2r+1(Σ) = L2r+1(ΩF ).
Since ΩF ⊆ Σ it is clear that L2r+1(Σ) ⊇ L2r+1(ΩF ). Assume that L2r+1(Σ) 6⊆ L2r+1(ΩF ).
Then there must be a configuration x ∈ Σ such that x[−r,r] /∈ L2r+1(ΩF ) but this would
imply that x /∈ B2−r(ΩF ) which is a contradiction. Then we have L2r+1(Σ) = L2r+1(ΩF ) =
L2r+1(ΩG) which implies that F |Σ = G|Σ and Σ ⊆ BZ. To conclude the proof it is sufficient
to show that there exist n,m ∈ N such that Fn(AZ) ⊆ Σ and Gm(AZ) ⊆ Σ which would
imply that (AZ, F ) and (BZ, G) are both stable if and only if (Σ, F ) is stable and are both
unstable otherwise.

Let W be the clopen set as defined in Proposition 1.8. Since ωF (AZ) = ΩF , by com-
pactness, we have that for every x ∈ AZ there exists nx ∈ N such that Fnx(x) ∈ W . Then,
since W is F -invariant, by Lemma 1.4, there exists n ∈ N such that Fn(AZ) ⊆ W . Then,
for every i ∈ Z, it must be Fn(σi(x)) ∈ W which implies that Fn(x) ∈ Σ. We obtained
that there exists n ∈ N such that Fn(AZ) ⊆ Σ.

Let t be the order of Σ and let k ∈ N be such that 2k + 1 ≥ t. By using the same
argument above, we can show that there exists a mixing SFT Σ′ ⊂ B2−k(ΩG) such that
ωG(Σ′) = ΩG and such that Fm(BZ) ⊆ Σ′ for some m ∈ N. We just need to show that
Σ′ ⊆ Σ to obtain that there exists m ∈ N such that Fm(BZ) ⊆ Σ. Denote with Ω2k+1 the
SFT approximation of order 2k + 1 of ΩG. By using the same argument above, we have
L2k+1(Σ

′) = L2k+1(ΩG) = L2k+1(Ω2k+1) so Σ′ is of order t′ ≥ 2k + 1. Since Σ is of order
t ≤ 2k + 1 and Lt(Σ) ⊇ Lt(ΩG) it follows that Σ′ ⊆ Ω2k+1 ⊆ Σ.

3. Undecidable properties of limit set dynamics

In this section we show that there is a large class of properties of the dynamics on the
limit set which are not decidable. In particular we show that are undecidable all properties
of the limit set dynamics which are properties of stable CA or properties of CA with a
unique subshift attractor.
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Definition 3.1. Let P be a property of CA. We say that P is a stable property if ∀#(AZ, F ) ∈
P, (AZ, F ) is stable.

Definition 3.2. Let P be a property of CA. We say that P is a unique subshift attractor

property if ∀#(AZ, F ) ∈ P, ΩF is the unique subshift attractor of (AZ, F ).

To prove the undecidability of stable properties of limit set dynamics we need a prelim-
inary result. We don’t know if a not nilpotent cellular automaton with a spreading state
must be unstable. Anyway, by a simple construction, given a cellular automaton with a
spreading state, we can build a new cellular automaton with a spreading state which is
nilpotent (then stable) if and only if the old one is nilpotent and it is unstable otherwise.

Lemma 3.3. Let (AZ, F ) be a CA with a spreading state. Then it is possible to construct

a CA (BZ, G) with a spreading state such that (BZ, G) is nilpotent if and only if (AZ, F ) is

nilpotent and (BZ, G) is unstable otherwise.

Proof. Let s ∈ A and r ∈ N be the spreading state and the radius of (AZ, F ), respectively.
Define B = A ∪ {s′} where s′ /∈ A. We define the local rule of (BZ, G) in the following way

g(x1, ..., x2r+1) =

{

f(x1, ..., x2r+1) if ∀i, xi ∈ A and ∃xi 6= s
s′ otherwise

Note that the new state s′ is spreading for (BZ, G) and that the only block in A2r+1 which
is mapped to s′ is s2r+1. Now, it is clear that (AZ, F ) is nilpotent if and only if (BZ, G) is
nilpotent. Assume that (AZ, F ) is not nilpotent. By compactness, it is possible to prove
that there exists a configuration x ∈ AZ such that ∀i ∈ N,∀j ∈ Z, F i(x)j 6= s. Define the
configuration y ∈ BZ in the following way: y(−∞,−1] = x(−∞,−1], y[1,∞) = x[1,∞) and y0 = s′.

We have that F−1(y) = ∅, ω(y) = {...s′s′s′...} and ∀i ∈ N,∀j ∈ Z, F i(y)j 6= s. For n ∈ N

consider z ∈ F−n(Fn(y)). Since s is spreading in AZ and since s2r+1 is the unique block
in A2r+1 which is mapped to s′, the only possibility is that z0 = s′. Moreover it is easy to
check that ∀j ∈ Z \ {0}, s′ 6= zj 6= s and F−1(z) = ∅. Then ∀n ∈ N, Fn(y) /∈ ΩG which

implies that (BZ, G) is unstable.

Note that, by Proposition 2.6 and Proposition 2.7, if a property P is a property of all
stable CA then P is undecidable.

Theorem 3.4. Every nonempty stable property of limit set dynamics is undecidable.

Proof. The proof is by reduction from nilpotency. Assume that P is some nonempty stable
property of limit set dynamics. Let #(AZ, F ) ∈ P and let (BZ, G) be a cellular automaton
with a spreading state s ∈ B. By Lemma 3.3, we can assume that (BZ, G) is stable if and
only if it is nilpotent.

We show how to build a new cellular automaton (CZ,H) such that #(CZ,H) ∈ P if
and only if (BZ, G) is nilpotent. We can build (CZ,H) by simply taking the product of
(AZ, F ) with (BZ, G). In detail, consider the product cellular automaton (AZ ×BZ, F ×G).
To obtain (CZ,H) it is sufficient to recode the alphabet of AZ × BZ in the following way

∀a ∈ A,∀b ∈ B, (a, b) =

{

a if b = s
ab otherwise

Since there is a 1-to-1 mapping between CZ and AZ × BZ, the local rule of H on CZ is
naturally induced by the local rule of F × G on AZ × BZ.
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Now, it is not difficult to see that ΩF = ΩH , F |ΩF
= H|ΩH

if and only if (BZ, G) is

nilpotent and in this case #(CZ,H) ∈ P. On the contrary (BZ, G) is unstable then (CZ,H)
is also unstable and #(CZ,H) /∈ P.

The construction of Theorem 3.4 can be used also for the unique subshift attractor
case. Also in this case note that, by Proposition 2.5, if a property P is a property of all CA
with a unique subshift attractor then P is undecidable.

Theorem 3.5. Every nonempty unique subshift attractor property of limit set dynamics is

undecidable.

Proof. The proof is by reduction from nilpotency. Let P be some nonempty unique subshift
attractor property of limit set dynamics. Let #(AZ, F ) ∈ P and let (BZ, G) be a cellular
automaton with a spreading state s ∈ B. By using the construction of Theorem 3.4, we
can build a cellular automaton (CZ,H) by taking the product of (AZ, F ) with (BZ, G). We
show that #(CZ,H) ∈ P if and only if (BZ, G) is nilpotent. As shown in Theorem 3.4,
we have that ΩF = ΩH and F |ΩF

= H|ΩH
if and only if (BZ, G) is nilpotent. Moreover,

by construction, A ⊂ C and the clopen set U = {[a] | a ∈ A} is H-invariant, spreading
and ωH(U) = ΩF . Then if (BZ, G) is nilpotent we have that ωH(U) = ΩF = ΩH and
#(CZ,H) ∈ P. Otherwise ωH(U) = ΩF 6= ΩH and (CZ,H) has two distinct subshift
attractors, ΩF and ΩH , then #(CZ,H) /∈ P.

To conclude we show some properties of limit set dynamics which are undecidable. We
need the following proposition.

Theorem 3.6. Let (AZ, F ) be a cellular automaton. If F : ΩF → ΩF is closing then ΩF is

a mixing SFT.

Proof. Since F is closing on ΩF , ∃n > 0 such that ∀x, y ∈ ΩF ,∀i ∈ Z if x[i,i+n) = y[i,i+n)

and F (x)[i,i+2n] = F (y)[i,i+2n] then xi+n = yi+n. Consider the subshift S = {(x, y) | F (x) =

y} ⊆ ΩF ×ΩF . Let m = max{n, r} where r is the radius of (AZ, F ). Let S2m+1 be the SFT
approximation of order 2m + 1 of S. Consider the two projections of S2m+1:

• S′
2m+1 = {x | ∃(x, y) ∈ S2m+1}

• S′′
2m+1 = {y | ∃(x, y) ∈ S2m+1}

Since m ≥ r, we have F (S′
2m+1) = S′′

2m+1 and ΩF ⊆ S′
2m+1. We show that S′

2m+1 is a
SFT and that F restricted to S′

2m+1 is closing. Since F (S′
2m+1) = S′′

2m+1, it follows that
(S′

2m+1, σ) is conjugated to (S2m+1, σ) then S′
2m+1 is a SFT. Assume for absurd that there

are two sequences x, y ∈ S′
2m+1 such that xn 6= yn, x(−∞,n) = y(−∞,n) and F (x) = F (y).

Then, since m ≥ n and F is closing on ΩF it follows that must be xn = yn contradicting
the assumption.

Let k be the order of S′
2m+1 and let t ∈ N such that 2t + 1 ≥ k. By Proposition 1.4,

there exists an F -invariant clopen set U ⊆ B2−t(ΩF ) such that ω(U) = ΩF . Moreover,
by Proposition 1.8, U contains a mixing SFT Σ such that F (Σ) ⊆ Σ and ω(Σ) = ΩF .
Moreover, since 2t + 1 is larger than the order of S′

2m+1, we have also ΩF ⊆ Σ ⊆ S′
2m+1.

Now, since F is closing on S′
2n+1, it follows that F must be closing on Σ. Then since Σ

is mixing, F (Σ) ⊆ Σ and F is closing on Σ it follows that F (Σ) = Σ which implies that
Σ ⊆ ΩF and then ΩF = Σ.

From Theorem 3.4 and Theorem 3.5 we can easily derive the following corollary.
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Corollary 3.7. There is no algorithm that, given (AZ, F ), can decide if

1. F : ΩF → ΩF is transitive.

2. F : ΩF → ΩF is closing,

3. F : ΩF → ΩF is injective,

4. F : ΩF → ΩF is the identity map,

5. F : ΩF → ΩF is expansive,

6. F : ΩF → ΩF is positively expansive,

Proof. By Theorem 3.4 and Theorem 3.5 it is sufficient to show that properties 1, .., 6 imply
that (AZ, F ) is stable or that it has a unique subshift attractor.

1. If F : ΩF → ΩF is transitive then ΩF is the unique attractor of (AZ, F ) and, in
particular, it is the unique subshift attractor.

2. If F : ΩF → ΩF is closing then, by Theorem 3.6, ΩF is a mixing SFT then (AZ, F )
must be stable.

3. If F : ΩF → ΩF is injective then, since F is surjective on ΩF , it must be invertible
and then closing.

4. If F : ΩF → ΩF is the identity map then F must be injective on ΩF .
5. If F : ΩF → ΩF is expansive then F must be injective on ΩF and then closing and

transitive.
6. If F : ΩF → ΩF is positively expansive then F must be closing on ΩF and transitive.

4. Concluding remarks

In this paper we proved that any property of limit set dynamics is undecidable, if it
implies stability or the existence of a unique subshift attractor. As examples of properties
which imply stability we have closing (which implies that the limit set is a mixing SFT),
injectivity, expansivity, positively expansiveness and identity (all of which imply closing).
As examples of properties which imply the existence of a unique subshift attractor we have
transitivity, expansivity and positively expansiveness (expansive and positively expansive
endomorphisms of mixing SFTs are transitive). From Theorem 3.4 and 3.5 we can conclude
that all such properties are undecidable. We remark that, since surjectivity is not a property
of limit set dynamics (and it is decidable), if we restrict to only surjective CA then we cannot
derive any conclusion from our theorems. In particular we cannot conclude anything about
the decidability of transitivity, expansivity and positively expansiveness (it is already known
that closing, injectivity and identity are decidable for surjective CA).

Our main undecidability proofs are by reduction from nilpotency. Note that a nilpotent
CA is stable and it has a unique subshift attractor. Then (the problem to decide) nilpotency
is the easiest problem among all decision problems on the limit set dynamics of stable CA
and of CA with a unique subshift attractor.

We conclude the paper by raising a question. It is not clear how stability is related to
the existence of a unique subshift attractor. To our knowledge there are no examples of
stable CA with two distinct subshift attractors. For a wide class of stable CA it is possible
to prove that they have a unique subshift attractor (in particular surjective CA, see [FK07])
but the general question is open. If stable CA have a unique subshift attractor then Lemma
3.3 would be useless and we could derive Theorem 3.4 as a corollary of Theorem 3.5.

Question 4.1. Is there any stable CA with two distinct subshift attractors?
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