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From VarI-SIG 2014: Identification and annotation of genetic variants in the context of structure, function
and disease
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Abstract

Background: Enrichment analysis is a widely applied procedure for shedding light on the molecular
mechanisms and functions at the basis of phenotypes, for enlarging the dataset of possibly related genes/
proteins and for helping interpretation and prioritization of newly determined variations. Several standard and
Network-based enrichment methods are available. Both approaches rely on the annotations that characterize
the genes/proteins included in the input set; network based ones also include in different ways physical and
functional relationships among different genes or proteins that can be extracted from the available biological
networks of interactions.

Results: Here we describe a novel procedure based on the extraction from the STRING interactome of sub-
networks connecting proteins that share the same Gene Ontology(GO) terms for Biological Process (BP).
Enrichment analysis is performed by mapping the protein set to be analyzed on the sub-networks, and then by
collecting the corresponding annotations. We test the ability of our enrichment method in finding annotation
terms disregarded by other enrichment methods available. We benchmarked 244 sets of proteins associated to
different Mendelian diseases, according to the OMIM web resource. In 143 cases (58%), the network-based
procedure extracts GO terms neglected by the standard method, and in 86 cases (35%), some of the newly
enriched GO terms are not included in the set of annotations characterizing the input proteins. We present in
detail six cases where our network-based enrichment provides an insight into the biological basis of the diseases,
outperforming other freely available network-based methods.

Conclusions: Considering a set of proteins in the context of their interaction network can help in better
defining their functions. Our novel method exploits the information contained in the STRING database for
building the minimal connecting network containing all the proteins annotated with the same GO term. The
enrichment procedure is performed considering the GO-specific network modules and, when tested on the
OMIM-derived benchmark sets, it is able to extract enrichment terms neglected by other methods. Our
procedure is effective even when the size of the input protein set is small, requiring at least two input
proteins.
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Background
Next Generation Sequencing (NGS) technologies enable
the discovery of large sets of genetic variations charac-
terizing the individual variability. One common problem
is to dig out variations potentially related to different
phenotypes, including susceptibility to diseases. A widely
adopted procedure relies on the extraction of functional
information from sets of genes or proteins already asso-
ciated to the phenotype under investigation: this proce-
dure allows extending the set of genes or proteins
potentially associated to the phenotype and can there-
fore be useful for prioritizing large sets of experimental
variations detected with NGS experiments. Functional
association is routinely performed by means of statistical
enrichment analysis over a gene/protein set of interest
(see [1] for a comprehensive review of different
approaches). Standard enrichment methods treat each
gene/protein as an isolated object and completely
neglect the different types of relations among molecules.
However, the analysis of genes and proteins in the con-
text of their physical interaction networks, gene regula-
tory networks, metabolic and signaling pathways can
help in extracting new biological information (see [2]
for a comprehensive review on the applications of inter-
action networks to the study of human diseases).
Several approaches exploiting the interaction networks

for functional association analysis (network-based enrich-
ment analysis) have emerged in the last few years [3].
These network-based methods can be broadly classified
into two main classes: A) methods that use the topology
of the interaction network to infer how much similar dis-
tinct sets of gene/proteins are (among them, EnrichNET
[4], PWEA [5], THINKBack [6], NetPEA [7], PathNet [8],
NetGSA [9], SANTA [10], SPIA [11], JEPETTO [12],
PathwayExpress[13], DEGraph [14]); B) methods that
identify functionally-related modules in interaction net-
works and then infer protein/gene biological roles from
such modules (among them, FunMod [15], PINA [16],
MetaCORE [17]). In both classes, graph-theoretic mea-
sures and graph properties(such as shortest paths, degree,
etc) are commonly used to extract information from the
interaction network. Most methods deal with pathway
enrichment analysis, some of them with both pathway
and Gene Ontology (GO) terms. Among the publicly
available tools that perform GO enrichment analysis,
EnrichNet [4] and PINA [16] are two of the most cited
methods, representative of the A and B classes above,
respectively.
PINA (Protein Interaction Network Analysis) is a web

resource based on the integration of six protein-protein
interaction databases (IntAct [18], MINT [19], BioGRID
[20], DIP [21], HPRD [22] and MIPS MPact [23]). The
core of PINA consists of a computational pre-analysis of
the molecular interaction network aiming at identifying

clusters of densely interconnected nodes, which are
likely to represent sets of functionally related proteins.
Each cluster is annotated, through a standard enrich-
ment analysis, with terms derived from different biologi-
cal databases (KEGG [24], PFAM [25], GO [26]). Given
an input dataset of genes/proteins, they are mapped on
the pre-computed clusters and the overrepresented clus-
ters are identified by means of a hypergeometric enrich-
ment test. The input dataset is then characterized by the
significantly enriched annotations of the overrepresented
clusters. EnrichNet is a web platform for enrichment
analysis based on a network integrating different infor-
mation: molecular interactions (STRING [27]), cellular
pathways (KEGG [24], BioCarta [28], WikiPathways
[29], REACTOME [30], PID [31]), biological annotations
(GO [26], InterPro [32]) and tissue-specific gene expres-
sion data. EnrichNet introduces i) a network-based
distance between sets of proteins, computed by means
of a random walk with a restart procedure; ii) a statisti-
cal framework for assessing the significance of distance
between two protein sets. These measures allow com-
paring an input protein set with all the sets of proteins
that share the same annotation term on the network.
Given an input set, its network-based distances are com-
puted and the annotations corresponding with signifi-
cantly close sets are retained.
Here we introduce a method for enrichment analysis

that implements a novel computational strategy designed
to mine and extract information from publicly available
interactomics datasets. Our method falls within class B
and, similarly to PINA, it is based on a preprocessing
phase aimed at identifying interconnected and compact
modules in a molecular interaction network. However,
differently from all the other approaches in class B, the
modules found by our method are function-specific by
construction, since they are built starting from seed sets
collecting all the proteins related to a specific biological
annotation. We make use of graph-theoretic and infor-
mation-theoretic measures to extend the seed sets into
connected subgraphs of a molecular interaction network.
Each subgraph represents a compact and function speci-
fic module in the interaction network. Our enrichment
pipeline consists of two independent analyses: a standard
enrichment and a network-based enrichment. The net-
work-based analysis is performed by mapping an input
set of proteins into the pre-computed network modules
and by collecting the corresponding annotations for an
enrichment test. The network-based enrichment allows
the detection of statistical associations not directly infer-
able from the annotations of the starting protein set, and
thus not detectable through the standard enrichment.
Here, we test the ability of our network-based approach
to detect novel biological associations for sets of proteins
related to 244 different Mendelian diseases that are
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associated to two or more proteins, according to the
Online Catalog of Human Genes and Genetic Disorders
of Mendelian Inheritance in Man (OMIM) [33].

Methods
Interaction network and protein annotations
The human protein interaction network was downloaded
from STRING [27] (release 9.1). We retained all the links
with documented action (file protein.actions.v9.1.txt.gz
on the STRING website), irrespectively of the STRING
score and of the supporting evidence. The actions asso-
ciated to the links are activation, binding, catalysis,
expression, post-translational modification, and reaction.
The resulting network consisting of 16,958 nodes and
457,546 links, summarizes a large variety of interactions
types and integrates different large datasets.
All the nodes in STRING were unambiguously mapped

onto UniProtKB, using the UniProt id mapping data file
[34]. Human proteins in UniProtKB were annotated with
Gene ontology (GO) terms for Biological Process (BP)
[26,35], as retrieved from the UniProt-GOA web resource
[36]. Out of 138,517 human proteins included in Uni-
ProtKB, 37,743 are annotated with 12,785 different GO
BP terms. A total of 14,056 annotated proteins are
mapped on the STRING interactome and a total of
12,621 out of 12,785 GO BP terms are represented in the
STRING network. For 8,098 terms, it is possible to
extract specific modules from the STRING network, con-
taining a total of 33,315 proteins (see “Module extrac-
tion” section for details).

General workflow of the enrichment pipeline
Given a set of input proteins, our pipeline implements
the novel network-based enrichment and a standard
one.
The standard enrichment is performed with a

Bonferroni-corrected Fisher’s exact test to highlight
the overrepresented BP terms associated to the input
proteins, as annotated in UniProtKB. All the human
proteins in UniProtKB with at least one BP annotation
are used as background for the Fisher’s test (37,743
protein identifiers and 12,785 related BP terms).
The network-based enrichment relies on a preproces-

sing phase aimed at extracting modules starting from
seed sets of proteins sharing the same GO BP annotation.
By construction, a module is a compact and connected
subgraph of the molecular-interaction network. Given a
GO BP term (our reference GO term), the corresponding
module contains all the proteins directly annotated with
the same term in UniProtKB (seed nodes) and some of
their interacting partners (connecting nodes). The mod-
ule is determined by computing all the shortest paths
among the seeds and by reducing the resulting network

into the minimal connecting network preserving the dis-
tances among seeds. The minimal connecting network
adds to the seeds a set of connecting nodes that are more
reliably related to the reference GO term. The details of
module extraction are given below and the algorithmic
description is available in the Additional file 1. The
enrichment procedure determines whether there are sig-
nificant overlaps between the input proteins and the net-
work modules built for each GO BP term. In addition, in
the network-based enrichment, the Bonferroni-corrected
Fisher’s exact test is adopted. The whole set of human
proteins in the network-modules is used as background
for the Fisher’s test (33,315 protein identifiers and 8,098
related GO BP terms).
The output of the pipeline consists of a non-redun-

dant ranking of GO BP terms overrepresented in the
input set, ranked according to their Bonferroni-cor-
rected p-values. It is important to notice that with a
standard enrichment only GO terms already associated
to input proteins can result as overrepresented. On the
contrary, the network-based enrichment allows to detect
statistical associations with GO terms not included in
the annotations of the input protein set. Such terms
represent the added-value information of the network-
based enrichment analysis.

Module extraction
The module extraction is schematized in Figure 1 and
includes four steps. We extract modules for 8,098 out of
12,621 GO BP terms represented in the STRING net-
work. For each reference GO BP term, all the proteins
in the network that are directly annotated with the same
term are collected in a seed set (Figure 1, step 1). Each
seed set is then extended into a function-specific mod-
ule, i.e. a compact and connected subgraph of the
STRING network. The function-specific module is built
in three steps: extraction of the shortest path network
(Figure 1, step 2), reduction to the minimal network
(Figure 1, steps 3 and 4) and quality filtering, as detailed
below.
Extraction of the shortest path network
We extract the sub-network of STRING consisting of all
the shortest paths between the proteins in the seed set.
Seed proteins not appearing in STRING are kept as iso-
lated nodes in the shortest path network. For the shortest
paths computation, we do not make use of the edge-
scores provided in STRING, i.e. we treat STRING as an
undirected and unweighted graph, without self-loops.
The size of the shortest path networks extracted from
STRING is usually large, even for relatively small input
protein sets. On average, the shortest path networks
extracted for the different GO BP terms contain 15 times
more proteins than their seed sets.
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Minimal connecting network
Due to the large number of retrieved connecting nodes, a
minimization is applied to the shortest path network in
order to simplify its topology and thus highlight its main

structure. In particular, the computational goal of the
procedure is to extract from the shortest path network,
the smallest distance-preserving network, i.e. the smallest
subgraph that preserves the shortest distances between

Figure 1 Outline of the network module generation of NET-GE. Details on the different steps are explained in Methods. *Ranking scores are
hierarchically applied.
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the seed proteins. The minimization procedure is the
most computationally expensive step of the module con-
struction, as it closely resembles the Steiner tree problem
[37,38]. Furthermore, the optimal solution is usually not
unique. Our implementation makes use of the following
heuristic approach:

i) The nodes in the network are split into two dis-
joint groups: seed nodes (i.e. the nodes related to the
seed proteins) and connecting nodes (i.e. the remain-
ing nodes in the shortest path network).
ii) The connecting nodes are ranked according to
three predefined relevance criteria. Their description
is detailed in the “Ranking scores” section.
iii) The ranked list is iteratively processed starting
from the least important node.
iv) The currently evaluated node is removed from
the shortest path network only if its deletion does
not increase the shortest distance between any pair
of seed nodes.

Ranking scores
In the current version, the ranking of a connecting node
is obtained by applying three scores (sc, ss, cc), which
are used as primary, secondary and tertiary sort key,
respectively.

i) Seed centrality (sc). We say that a node connects
two seed nodes if it appears in some shortest path
connecting them. Thus, the seed centrality measure
simply counts the number of distinct seed pairs con-
nected by a node. This property implicitly assumes
that the higher the number of seed pairs a node con-
nects, the higher the probability that such node
appears in a minimal connecting network.
ii) Maximum semantic similarity with the reference
GO term (ss). The semantic similarity measures to
which extent the annotation terms of each connecting
node is related to the reference GO term: a connect-
ing node with a high semantic similarity score is
more likely to be functionally related to the seed
nodes. The semantic similarity is defined as the Lin’s
information-theoretic metric [39]. In detail, we define
the maximum semantic similarity of a connecting
node with respect to the reference GO term as the
highest Lin’s score between the GO terms associated
to the connecting node/protein and the reference GO
term. The background for the information content
measure used in Lin’s metric is given by the entire set
of UniProt-GOA annotations for human proteins
[36]. The maximum semantic similarity property
explicitly gives more importance to connecting pro-
teins whose annotations are more closely related
to the reference GO term (see Additional file 1 for
further details).

iii) Betweenness centrality (bc). The betweenness
centrality (with respect to the nodes in the seed set)
is a measure of centrality of a node in a network
[40]. This property is mainly used to assess a local
ranking for those connecting nodes that have exactly
the same ranking with respect to the previous two
properties. In large shortest path networks, this hap-
pens quite often, due to the limited range of values
of the previous two properties above.

As for the shortest path network, seed proteins not
appearing in STRING are kept as isolated nodes in the
minimal networks. Differently from the shortest path
networks, the minimal connecting networks are quite
compact. On the average, they contain only 1.5 times
more proteins that their seed sets. One example of a
shortest path network is provided in Figure 2.
Quality filtering
A quality filtering procedure is applied to the minimal
connecting networks built in the previous step. The idea is
to filter out those networks for which the GO annotations
of the connecting nodes are weakly related to the refer-
ence GO term. In particular, rare BP terms (i.e. BP terms
with few related proteins) tend to produce minimal net-
works consisting uniquely of long paths. In most of such
cases, the annotations of the connecting proteins are unre-
lated to the reference GO, and then the resulting minimal
network is unlikely to include many proteins related to the
reference GO. Such network-modules are discarded and
not considered for the enrichment. The quality filtering
procedure makes use of the maximum semantic similarity
measure, as defined above. In particular, a minimal net-
work is retained if, with respect to the reference GO term,
the average maximum similarity of the connecting nodes
is significantly higher than the average maximum similar-
ity of all the nodes in STRING, as assessed by a Student’s
t-test with significance set to 5%. The quality test dis-
charges 1,205 networks out of 12,621 (with sizes ranging
from 3 to 137 nodes, with an average of 13).
We also filter out minimal networks that do not con-

tain any connecting node. The number of GO BP terms
for which we extract a non-trivial network is then 8,098.

Benchmark set
In order to benchmark the method, we extracted from
the OMIM web resource [33] a list of genetic diseases
that have been associated to two or more genes. We fil-
tered out all the diseases associated to genes ambiguously
mapped on UniProtKB. For performance assessment, we
retained only the diseases associated to at least two pro-
teins present in the function-specific network modules.
We ended up with a set of 244 genetic diseases. The
number of proteins associated to each selected disease
ranges from 2 to 29, with an average of 4.
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Results
The annotation pipeline retrieves enriched GO BP terms
computed with a standard and a network-based proce-
dure. Both are performed with Bonferroni-corrected Fisher
tests, considering a significance level of 5%. We bench-
marked on the OMIM-derived benchmark set the level of
annotation added by the network-based method from
both a quantitative and qualitative point of view. The
quantitative analysis highlights the ability of the network-
based method in recovering new enriched functions. The
qualitative analysis focuses on six cases for which the
newly enriched terms add new biological insights, as con-
firmed by previously published experimental data.

Quantitative analysis on OMIM diseases
For assessing the power of the network-based enrich-
ment, we focus uniquely on GO BP terms that are not
enriched by the standard method (filtering out also all
the terms that are ancestors of terms enriched by the
standard method). Results are listed in Table 1. In eleven
cases out of 244 (5%), neither the standard enrichment
nor the network-based enrichment retrieve significantly
overrepresented BP term (first row in Table 1). In 143
cases (58%) the network-based enrichment detects more
terms than the standard one (last two rows in Table 1).
The average number of these terms is 38 per disease.

Moreover, in 86 cases (35%) the network-based proce-
dure is able to enrich terms that were not included in the
sets of annotations characterizing the input protein set
(last row in Table 1). The average number of these new
terms is 17. It is also worth noticing that the network-
based enrichment returns significant terms in 7 cases out
of the 18 where the standard method fails to provide any
result (data not shown). 30% of the annotations refer to
GO terms that are associated to less than 100 proteins in
the human proteome, describing quite specific functions.
Terms that are more common are less frequently
enriched, mainly owing to the Bonferroni-corrected
Fisher test that we applied (see Figure 3). Network-based
methods introduce a bias towards terms associated to
the most connected nodes (see in our case Figure 1S,
Additional file 2). We find that the bias is also present in
the case of the standard enrichment procedure that does
not make use of the network information (Figure 1S).

Qualitative analysis on OMIM diseases
The newly enriched terms that are absent in the original
annotations of the input genes are likely to gain new
knowledge on the disease at hand. We focus the qualita-
tive analysis on them and we detail here six case studies
for which experimental validations are available for the
annotations derived with our method. For all the reported

Figure 2 Minimal connecting network for GO:0036018. A) Minimal connecting network extracted from STRING 9.2 (http://www.string-db.org)
build for the Biological Process term GO:003601 (cellular response to erythropoietin). The seed genes, directly annotated with GO:0036018, are
HGNC:MT2A, HGNC:KIT, HGNC:EPOR and HGNC:MT1X. The connecting genes HGNC:JAK2 and HGNC:IL6, recovered by the minimization
procedure, are associated to GO:0019221 (cytokine-mediated signaling pathway). B) Relation between the reference GO term (GO:0036018) and
the GO associated to the connecting genes (GO:0019221).
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cases, PINA does not return any significant association.
EnrichNet enriches only terms that are already included in
the annotations of the input proteins. However EnrichNet
is best suited to analyze sets including at least 10 proteins,
while in our case studies, four out of six cases consist of
input sets comprising two to four proteins.
OMIM #133100 ERYTHROCYTOSIS, FAMILIAL, 1
The disease is characterized by the increase of the red
blood cell mass and hemoglobin concentration, and by
hypersensitivity of erythrocyte progenitors (myeloid cells)
to erythropoietin. The disease is associated to three genes
(the tyrosine-protein kinase HGNC: JAK2, the SH2B adap-
ter protein HGNC: SH2B3, and the erythropoietin recep-
tor HGNC: EPOR) and the standard method enriches two
terms related to histone phosphorylation. NET-GE adds
three terms, reported in Table 2 (see file OMIM133100.
pdf in Additional file 3 for the complete annotation). Two
are already present in the set of annotations of the input
proteins and are related to the response to erythropoietin
(one of these terms is shown in Figure 2). The novel term
is related to the regulation of myeloid cell apoptosis. Inter-
estingly enough, the involvement of this last process is
reported in [41].
OMIM #143465 ATTENTION DEFICIT-HYPERACTIVITY
DISORDER; ADHD
ADHD is a psychiatric disease related to the develop-
ment of the nervous system in children and adolescents.
It has been linked to variations in dopamine receptors

HGNC: DRD4 and HGNC: DRD5. Standard enrichment
is able to highlight the connection between the disorder
and the dopaminergic pathway, including the second
messenger intracellular pathway based on cAMP. It also
enriches GO-terms related to psychiatric functions (cog-
nition, learning) and to the response to several com-
pounds (amphetamine, cocaine, alkaloids, ammonium
ion). As reported in Table 3 the network-based proce-
dure enriches several terms already present in the anno-
tation of the two input proteins (see file OMIM143465.
pdf in Additional file 3 for the complete annotation). In
addition, in this case, they refer to behavioral characters
(response to fear, stress and defense) or to the response
to chemical compounds (histamine). More interestingly,
new terms are enriched, highlighting processes unex-
pectedly involved in ADHD such as the regulation of
the GABAergic pathway and the transport of aminoa-
cids. Both these processes, although non-characterizing
the input proteins, have been experimentally related to
ADHD in [42] and [43].
OMIM #188890 TOBACCO ADDICTION, SUSCEPTIBILITY TO
Susceptibility to tobacco addiction has been linked to
four proteins (the dopamine transporter HGNC:
SLC6A3, the GABAergic G-protein coupled receptor
HGNC: GABBR2, the cholinergic receptor HGNC:
CHRNA4 and the cytochrome P450 HGNC: CYP2A6).
Standard procedure enriches the processes related to
intercellular signaling and to the response to nicotine

Table 1. Functional annotation of 244 OMIM diseases with our pipeline

Annotation* OMIM diseases°

No significant GO BP terms extracted by SE and NET-GE 11 (5%)

Same significant terms extracted by SE and NET-GE 90 (37%)

NET-GE enriches more terms already included in the annotation of the input proteins 57 (23%)

NET-GE adds new terms not included in the annotation of the input proteins 86 (35%)

*Functional annotation is performed with our network-based procedure (NET-GE) and with a standard enrichment (SE) method. ° number out of the 244 OMIM
diseases.

Figure 3 Number of enriched GO BP terms as a function of the frequency of occurrence in the human proteome. The x-axis groups GO
BP terms based on their frequency of occurrence in the human proteome. The numbers between parentheses indicate the number of GO BP
terms falling in each class.
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and to alkaloids. Network-based enrichment (Table 4) is
able to highlight processes such as “social behavior” and
“intraspecies interactions between organisms” that are
relevant for tobacco addiction and that were not present
among the annotations characterizing the four starting
proteins (see file OMIM188890.pdf in Additional file 3
for the complete annotation). Moreover, a GO term
referring to the response to cocaine is enriched. Connec-
tions between nicotine consumption and response to
cocaine have been recently described at the molecular
level [44].
OMIM #188050 THROMBOPHILIA DUE TO THROMBIN
DEFECT; THPH1
THPH1 is a disorder of impaired clot formation linked
to four different proteins: the coagulation factor HGNC:
F13A1, the prothrombin HGNC: F2, the methylenete-
trahydrofolate reductase HGNC: MTHFR, and the hya-
luronan-binding protein HGNC: HABP2. Standard
enrichment only extracts a GPCR signaling pathway,
while the network based procedure is able to correctly
identify the main impaired process, namely the platelet
aggregation (Table 5 see file OMIM188050.pdf in Addi-
tional file 3 for the complete annotation). This term is
more specific than those reported in the annotation of
the input proteins.
OMIM #608446 SUSCEPTIBILITY TO MYOCARDIAL
INFARCTION
The susceptibility to myocardial infarction is linked to
12 different proteins (see file OMIM608446.pdf in Addi-
tional file 3). Both standard and network based enrich-
ment extract different terms, already associated to the
input proteins. However, NET-GE is able to add two

new important processes related to the disease: regula-
tion of angiogenesis and regulation of vasculature devel-
opment (Table 6).
OMIM #601665 OBESITY
Obesity is linked to 16 different proteins (see file OMIM
601665.pdf in Additional file 3). Both the standard and
the network based enrichment extract many terms,
already associated to the input proteins. NET-GE is able
to newly enrich several processes listed in table 7. Most
of these processes are known to be related to obesity. In
particular, the most specific ones are: i) the sodium ion
homeostasis [45]; ii) the CD4-positive, alpha-beta T cell
differentiation/activation [46]; iii)the negative regulation
of bile acid biosynthetic process [47]; iv) the regulation of
adrenergic receptor signaling pathway [48]; v) the regula-
tion of serotonin secretion [49]; vi) the inflammatory
response [50]; vii) the negative regulation of cAMP-
mediated signaling [51].

Conclusions
We describe a novel computational method, NET-GE, for
enrichment analysis, which exploits the information con-
tained into molecular interaction networks. Given a set of
input proteins, our method can detect functional associa-
tions not directly inferable from the annotations of the
starting protein set, and thus not detectable through a
standard enrichment. The method has been benchmarked
on a set of 244 different Mendelian diseases associated to
more than two proteins, as reported in the OMIM data-
base. The lists of enriched terms for the benchmark exam-
ples are available in Additional file 3. NET-GE is able to
enrich terms neglected by the standard method and, in a

Table 2. GO BP terms enriched with NET-GE for OMIM disease #133100 (FAMILIAL ERYTHROCYTOSIS 1)

Biological Process GO Term Description Bonferroni corrected p-value

GO:0036017 response to erythropoietin 8.1·10-5

GO:0036018 cellular response to erythropoietin 8.1·10-5

GO:0033033* negative regulation of myeloid cell apoptotic process 2.5·10-3

*GO BP term not directly associated to the input proteins.

Table 3. GO BP terms enriched with NET-GE for OMIM disease #143465 (ATTENTION DEFICIT-HYPERACTIVITY
DISORDER; ADHD)

Biological Process GO Term Description Bonferroni corrected p-value

GO:0014052* regulation of gamma-aminobutyric acid secretion 1.1·10-4

GO:0034776 response to histamine 1.6·10-4

GO:0051954 positive regulation of amine transport 1.9·10-3

GO:0001662 behavioral fear response 2.8·10-3

GO:0032228* regulation of synaptic transmission, GABAergic 4.7·10-3

GO:0050805 negative regulation of synaptic transmission 6.0·10-3

GO:0060078 regulation of postsynaptic membrane potential 2.0·10-2

GO:0098661* inorganic anion transmembrane transport 4.2·10-2

*GO BP term not directly associated to the input proteins.
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considerable amount of cases, the terms are not even
included in the annotation of the input set. For some dis-
eases, it is possible to prove that new enrichment terms
are coherent with the experimental information available
for the diseases. Therefore, we propose our novel net-
work-based enrichment as a procedure helping in formu-
lating new hypotheses on the biological processes
underlying a particular phenotype for which a pool of
associated proteins is known. Enriched GO-terms can
suggest pools of new proteins potentially associated to the
phenotype at hand and can therefore help the prioritization

of new variants to be discovered with sequencing techni-
ques. One of the advantages of our method, with respect to
other similar ones, is its ability to extract new information
even from very small sets of input proteins. In the current
version, the network-based method makes use of the
STRING network of physical interactions and analyzes only
the GO BP annotations. However, the method is quite
general and it does not rely on such specific interaction
network and biological annotations. For future develop-
ment, we plan to extend it to different networks and differ-
ent biological annotations.

Table 4. GO BP terms enriched with NET-GE for OMIM disease #188890 (SUSCEPTIBILITY TO TOBACCO ADDICTION)

Biological Process GO Term Description Bonferroni corrected p-value

GO:0035176* social behavior 3.8·10-2

GO:0051703* intraspecies interaction between organisms 3.8·10-2

GO:0042220 response to cocaine 4.3·10-2

*GO BP term not directly associated to the input proteins.

Table 5. GO BP terms enriched with NET-GE for OMIM disease #188050 (THROMBOPHILIA DUE TO THROMBIN DEFECT;
THPH1)

Biological Process GO Term Description Bonferroni corrected p-value

GO:0070527* platelet aggregation 3.0·10-2

*GO BP term not directly associated to the input proteins.

Table 6. GO BP terms enriched with NET-GE for OMIM disease #608446 (SUSCEPTIBILITY TO MYOCARDIAL
INFARCTION)

Biological Process GO Term Description Bonferroni corrected p-value

GO:0045765* regulation of angiogenesis 6.0·10-3

GO:1901342* regulation of vasculature development 9.0·10-3

*only GO BP term not directly associated to the input proteins are reported

Table 7. GO BP terms enriched with NET-GE for OMIM disease #601665 (OBESITY).

Biological Process GO Term Description Bonferroni corrected p-value

GO:0055078* sodium ion homeostasis 3.0·10-3

GO:0048468* cell development 7.0·10-3

GO:0055067* monovalent inorganic cation homeostasis 1.0·10-2

GO:0007492* endoderm development 1.0·10-2

GO:0043367* CD4-positive, alpha-beta T cell differentiation 1.8·10-2

GO:0035710* CD4-positive, alpha-beta T cell activation 2.2·10-2

GO:0070858 negative regulation of bile acid biosynthetic process 2.3·10-2

GO:0019935* cyclic-nucleotide-mediated signaling 2.4·10-2

GO:0071877* regulation of adrenergic receptor signaling pathway 3.8·10-2

GO:0014062* regulation of serotonin secretion 4.1·10-2

GO:0048806* genitalia development 4.1·10-2

GO:0006954* inflammatory response 4.1·10-2

GO:0043951* negative regulation of cAMP-mediated signalling 4.4·10-2

GO:0050994* regulation of lipid catabolic process 4.9·10-2

*only GO BP term not directly associated to the input proteins are reported
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Additional material

Additional file 1: Details on the method implementation.

Additional file 2: Figure S1: Number of enriched GO BP terms as a
function of the maximum degree of the human proteins annotated
with a the same term.

Additional file 3: Detailed results for the OMIM-derived benchmark
set. The archive contains pdf documents listing the enriched terms for
each one of the 244 diseases in the OMIM-derived benchmark set.
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