104 research outputs found

    Endoplasmic reticulum stress and autophagy in homocystinuria patients with remethylation defects

    Get PDF
    Proper function of endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site as well as perturbation of mitochondria-associated ER membranes (MAMs) have been linked to neurodegenerative and metabolic diseases. Previously, we have observed an increase in ROS and apoptosis levels in patientderived fibroblasts with remethylation disorders causing homocystinuria. Here we show increased mRNA and protein levels of Herp, Grp78, IPR1, pPERK, ATF4, CHOP, asparagine synthase and GADD45 in patient-derived fibroblasts suggesting ER stress and calcium perturbations in homocystinuria. In addition, overexpressed MAM-associated proteins (Grp75, σ-1R and Mfn2) were found in these cells that could result in mitochondrial calcium overload and oxidative stress increase. Our results also show an activation of autophagy process and a substantial degradation of altered mitochondria by mitophagy in patientderived fibroblasts. Moreover, we have observed that autophagy was partially abolished by antioxidants suggesting that ROS participate in this process that may have a protective role. Our findings argue that alterations in Ca homeostasis and autophagy may contribute to the development of this metabolic disorder and suggest a therapeutic potential in homocystinuria for agents that stabilize calcium homeostasis and/or restore the proper function of ER-mitochondria communications.Ministerio de Ciencia e Innovación (SAF2010-15284 to ER), Ministerio de Economía y Competividad: Instituto de Salud Carlos III (PI13/01239 to BP), MITOLAB (S2010/BMD-2402 to BP), Ministerio de Economía y Competividad (SAF2013-43005-R to ER and LRD), and an Institutional grant from Fundación Ramón Areces to the Centro de Biología Molecular “Severo Ochoa”Peer Reviewe

    O-GlcNAcylation enhances CPS1 catalytic efficiency for ammonia and promotes ureagenesis

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMLife-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseasesThis work was supported by grants of Fondazione Telethon Italy (to N.B.‐P.), MIUR (PRIN2017 to N.B.‐P.), of the Swiss National Science Foundation (grant 320030_176088 to J.H.), of the US National Institutes of Health grants (R21NS091654 and R01NS100979 both to G.S.L.), of the Spanish Ministry of Science and Innovation (PID2019-105344RB-I00/AEI/10.13039/501100011033 toL.R.D. and E.R.), and by a Wellcome Trust Investigator Award (110061to D.M.F.v.A.

    Generation and characterization of a human iPSC line from a patient with propionic acidemia due to defects in the PCCA gene

    Full text link
    Human induced pluripotent stem cell (iPSC) line was generated from fibroblasts of a patient with propionic acidemia carrying mutations in the PCCA gene: c.1899+4_1899+7delAGTA; p.(Cys616_Val633del) and c.1430 −−?_1643+?del; p.(Gly477Glufs*9). Reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC were delivered using a non-integrative method based on the Sendai virus. Once established, iPSCs have shown full pluripotency, differentiation capacity and genetic stabilityThis work was supported by Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (grant numbers SAF2013-43005-R and SAF2016-76004-R). The authors thank INDEPF (Instituto de investigación y desarrollo social de enfermedades poco frecuentes), and E.Mansilla for her excellent assistance in the karyotype analysis (Instituto de Genética Médica y Molecular del Hospital Universitario de La Paz, Madrid, Spain). Centro de Biología Molecular Severo Ochoa receives an institutional grant from Fundación Ramón Areces (grant number CNXVII

    New perspectives for pharmacological chaperoning treatment in methylmalonic aciduria cblB type

    Full text link
    Methylmalonic aciduria cblB type (MMA cblB) is caused by the impairment of ATP:cob(I)alamin adenosyltransferase (ATR), the enzyme responsible for the synthesis of adenosylcobalamin (AdoCbl) from cob(I)alamin. No definitive treatment is available for patients with this condition and novel therapeutic strategies are therefore much needed. Recently, we described a proof-of-concept regarding the use of pharmacological chaperones as a treatment. This work describes the effect of two potential pharmacological chaperones - compound V (N-{[(4-chlorophenyl)carbamothioyl]amino}-2-phenylacetamide) and compound VI (4-(4-(4-fluorophenyl)-5-methyl-1H-pyrazol-3-yl)benzene-1,3-diol) - on six ATR mutants, including the most common, p.Arg186Trp. Comprehensive functional analysis identified destabilizing (p.Arg186Gln, p.Arg190Cys, p.Arg190His, p.Arg191Gln and p.Glu193Lys) and oligomerization (p.Arg186Trp and p.Arg191Gln) mutations. In a cellular model overexpressing the destabilizing/oligomerization mutations, compounds V and VI had a positive effect on the stability and activity of all ATR variants. When provided in combination with hydroxocobalamin a more positive effect was obtained than with the compounds alone, even in mutations previously described as B12 non-responsive. In addition, a normal oligomerization profile was recovered after treatment of the p.Arg186Trp mutant with both compounds. These promising results confirm MMA cblB type as a conformational disorder and hence, pharmacological chaperones as a new therapeutic option alone or in combination with hydroxocobalamin for many patients with MMA cblBThis work was supported by Instituto de Salud Carlos III and (grant PI13/01239) plus grants from the Fundación Isabel Gemio and Obra Social de La Caixa to BP; the Research Council of Norway [nr. 185181 to AM], The KG Jebsen Foundation, and NovoSeeds (Novo Nordisk). AG was supported by a Ramón y Cajal grant from the Ministerio de Ciencia y Tecnología. This work was supported also by the European Regional Development Fund (PI13/01239

    Antisense Oligonucleotide Rescue of Deep-Intronic Variants Activating Pseudoexons in the 6-Pyruvoyl-Tetrahydropterin Synthase Gene

    Full text link
    We report two new 6-pyruvoyl-tetrahydropterin synthase splicing variants identified through genomic sequencing and transcript analysis in a patient with tetrahydrobiopterin deficiency, presenting with hyperphenylalaninemia and monoamine neurotransmitter deficiency. Variant c.243 + 3A>G causes exon 4 skipping. The deep-intronic c.164-672C>T variant creates a potential 5' splice site that leads to the inclusion of four overlapping pseudoexons, corresponding to exonizations of an antisense short interspersed nuclear element AluSq repeat sequence. Two of the identified pseudoexons have been reported previously, activated by different deep-intronic variants, and were also detected at residual levels in control cells. Interestingly, the predominant pseudoexon is nearly identical to a disease causing activated pseudoexon in the F8 gene, with the same 3' and 5' splice sites. Splice switching antisense oligonucleotides (SSOs) were designed to hybridize with splice sites and/or predicted binding sites for regulatory splice factors. Different SSOs corrected the aberrant pseudoexon inclusion, both in minigenes and in fibroblasts from patients carrying the new variant c.164-672C>T or the previously described c.164-716A>T. With SSO treatment PTPS protein was recovered, illustrating the therapeutic potential of the approach, for patients with different pseudoexon activating variants in the region. In addition, the natural presence of pseudoexons in the wild type context suggests the possibility of applying the antisense strategy in patients with hypomorphic PTS variants with the purpose of upregulating their expression to increase overall protein and activity

    Pathogenic implications of dysregulated miRNAs in propionic acidemia related cardiomyopathy

    Full text link
    Cardiac alterations (hypertrophic/dilated cardiomyopathy, and rhythm alterations) are one of the major causes of mortality and morbidity in propionic acidemia (PA), caused by the deficiency of the mitochondrial enzyme propionyl-CoA carboxylase (PCC), involved in the catabolism of branched-chain amino acids, cholesterol, and odd-chain fatty acids. Impaired mitochondrial oxidative phosphorylation has been documented in heart biopsies of PA patients, as well as in the hypomorphic Pcca−/−(A138T) mouse model, in the latter correlating with increased oxidative damage and elevated expression of cardiac dysfunction biomarkers atrial and brain natriuretic peptides (ANP and BNP) and beta-myosin heavy chain (β-MHC). Here we characterize the cardiac phenotype in the PA mouse model by histological and echocardiography studies and identify a series of upregulated cardiac-enriched microRNAs (miRNAs) in the PA mouse heart, some of them also altered as circulating miRNAs in PA patients’ plasma samples. In PA mice hearts, we show alterations in signaling pathways regulated by the identified miRNAs, which could be contributing to cardiac remodeling and dysfunction; notably, an activation of the mammalian target of rapamycin (mTOR) pathway and a decrease in autophagy, which are reverted by rapamycin treatment. In vitro studies in HL-1 cardiomyocytes indicate that propionate, the major toxic metabolite accumulating in the disease, triggers the increase in expression levels of miRNAs, BNP, and β-MHC, concomitant with an increase in reactive oxygen species. Our results highlight miRNAs and signaling alterations in the PCC-deficient heart which may contribute to the development of PA-associated cardiomyopathy and provide a basis to identify new targets for therapeutic interventionThis work was supported by Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (grant number SAF2016-76004-R) and by Fundación Isabel Gemio and Fundación La Caixa (LCF/PR/PR16/ 11110018). AFG is funded by the FPI-UAM program, EAB and ARB by the Spanish Ministry of Science, Innovation and Universities (predoctoral fellowships FPU15/02923 and BES-2014-069420, respectively

    Therapeutic strategies based on modified U1 snRNAs and chaperones for Sanfilippo C splicing mutations

    Get PDF
    Mutations affecting RNA splicing represent more than 20% of the mutant alleles in Sanfilippo syndrome type C, a rare lysosomal storage disorder that causes severe neurodegeneration. Many of these mutations are localized in the conserved donor or acceptor splice sites, while few are found in the nearby nucleotides. In this study we tested several therapeutic approaches specifically designed for different splicing mutations depending on how the mutations affect mRNA processing. For three mutations that affect the donor site (c.234 + 1G > A, c.633 + 1G > A and c.1542 + 4dupA), different modified U1 snRNAs recognizing the mutated donor sites, have been developed in an attempt to rescue the normal splicing process. For another mutation that affects an acceptor splice site (c.372-2A > G) and gives rise to a protein lacking four amino acids, a competitive inhibitor of the HGSNAT protein, glucosamine, was tested as a pharmacological chaperone to correct the aberrant folding and to restore the normal trafficking of the protein to the lysosome. Partial correction of c.234 + 1G > A mutation was achieved with a modified U1 snRNA that completely matches the splice donor site suggesting that these molecules may have a therapeutic potential for some splicing mutations. Furthermore, the importance of the splice site sequence context is highlighted as a key factor in the success of this type of therapy. Additionally, glucosamine treatment resulted in an increase in the enzymatic activity, indicating a partial recovery of the correct folding. We have assayed two therapeutic strategies for different splicing mutations with promising results for the future applications

    Pathogenic variants of DNAJC12 and evaluation of the encoded cochaperone as a genetic modifier of hyperphenylalaninemia

    Full text link
    This is the peer reviewed version of the following article: Pathogenic variants of DNAJC12 and evaluation of the encoded cochaperone as a genetic modifier of hyperphenylalaninemia. Human Mutation (2020): 25 April, which has been published in final form at [https://doi.org/10.1002/humu.24026. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsThe variants identified in this study are openly available at http://www.lovd.nl/ with reference numbers 0000644164, 0000645396, 0000644166, and 0000405673Biallelic variants of the gene DNAJC12, which encodes a cochaperone, were recently described in patients with hyperphenylalaninemia (HPA). This paper reports the retrospective genetic analysis of a cohort of unsolved cases of HPA. Biallelic variants of DNAJC12 were identified in 20 patients (generally neurologically asymptomatic) previously diagnosed with phenylalanine hydroxylase (PAH) deficiency (phenylketonuria [PKU]). Further, mutations of DNAJC12 were identified in four carriers of a pathogenic variant of PAH. The genetic spectrum of DNAJC12 in the present patients included four new variants, two intronic changes c.298‐2A>C and c.502+1G>C, presumably affecting the splicing process, and two exonic changes c.309G>T (p.Trp103Cys) and c.524G>A (p.Trp175Ter), classified as variants of unknown clinical significance (VUS). The variant p.Trp175Ter was detected in 83% of the mutant alleles, with 14 cases homozygous, and was present in 0.3% of a Spanish control population. Functional analysis indicated a significant reduction in PAH and its activity, reduced tyrosine hydroxylase stability, but no effect on tryptophan hydroxylase 2 stability, classifying the two VUS as pathogenic variants. Additionally, the effect of the overexpression of DNAJC12 on some destabilizing PAH mutations was examined and a mutation‐specific effect on stabilization was detected suggesting that the proteostasis network could be a genetic modifier of PAH deficiency and a potential target for developing mutation‐specific treatments for PKUThis work was funded by grant PI16/00573, B2017/BMD-3721, the Fundación Isabel Gemio and the Fundación La Caixa (LCF/PR/PR16/11110018), an institutional grant from the Fundación Ramón Areces to the Centro de Biología Molecular Severo Ochoa, and the European Regional Development Fun

    Delivery of oligonucleotide-based therapeutics : challenges and opportunities

    Get PDF
    Funding Information: This work was supported by funding from Cooperation of Science and Technology (COST) Action CA17103 (networking grant to V.A-G). V.A-G holds a Miguel Servet Fellowship from the ISCIII [grant reference CPII17/00004] that is part-funded by the European Regional Development Fund (ERDF/FEDER) and also acknowledges funding from Ikerbasque (Basque Foundation for Science). S.M.H is funded by the Medical Research Council and Muscular Dystrophy UK. A.A-R receives funding from amongst others the Duchenne Parent Project, Spieren voor Spieren, the Prinses Beatrix Spierfonds, Duchenne UK and through Horizon2020 project BIND. A.G and R.W.J.C are supported by several foundations including the Algemene Nederlandse Vereniging ter Voorkoming van Blindheid, Stichting Blinden-Penning, Landelijke Stichting voor Blinden en Slechtzienden, Stichting Oogfonds Nederland, Stichting Macula Degeneratie Fonds, and Stichting Retina Nederland Fonds (who contributed through UitZicht 2015-31 and 2018-21), together with the Rotterdamse Stichting Blindenbelangen, Stichting Blindenhulp, Stichting tot Verbetering van het Lot der Blinden, Stichting voor Ooglijders, and Stichting Dowilvo; as well as the Foundation Fighting Blindness USA, grant no. PPA-0517-0717-RAD. R.A.M.B is supported by Hersenstichting Nederland Grant DR-2018-00253. G.G. is supported by Ministry of Research and Innovation in Romania/National Program 31N/2016/PN 16.22.02.05. S.A is supported by Project PTDC/BBB-BMD/6301/2014 (Funda??o para a Ci?ncia e a Tecnologia?MCTES, Portugal). L.R.D. is supported by Fundaci?n Ram?n Areces Grant XVII CN and Spanish Ministry of Science and Innovation (MICINN, grant PID2019-105344RB-I00). T.L is supported by Estonian Research Council grant PSG226. S.K is supported by the Friedrich-Baur-Stiftung. C.F is funded by The Danish Council for Independent Research, Technology and Production Sciences (grant number DFF-4184-00422). W.vRM is supported by ZonMw Programme Translational Research 2 [Project number 446002002], Campaign Team Huntington and AFM Telethon [Project number 20577]. S.E.B is supported by the H2020 projects B-SMART, Grant number 721058, and REFINE, Grant number 761104. A.T.G is supported by the Institut National de la sant? et la recherche m?dicale (INSERM) and the Association Monegasque contre les myopathies (AMM). L.E. is founded by the Association Monegasque contre les myopathies (AMM). Publisher Copyright: © 2021 The Authors. Published under the terms of the CC BY 4.0 licenseNucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.publishersversionPeer reviewe

    O-GlcNAcylation enhances CPS1 catalytic efficiency for ammonia and promotes ureagenesis

    Get PDF
    Life-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseases
    corecore