373 research outputs found

    New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element

    Get PDF
    Four new members of the ERF (ethylene-response factor) family of plant-speci¢c DNA-binding (GCC box) factors were isolated from tomato fruit (LeERF1^4). Phylogenetic analysis indicated that LeERF2 belongs to a new ERF class, characterized by a conserved N-terminal signature sequence. Expression patterns and cis/trans binding a⁄nities di¡ered between the LeERFs. Combining experimental data and modeled three-dimensional analysis, it was shown that binding a⁄nity of the LeERFs was a¡ected by both the variation of nucleotides surrounding the DNA cis-element sequence and the nature of critical amino acid residues within the ERF domain

    Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis thaliana

    Full text link

    Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit

    Get PDF
    Cantaloupe melons have a typical climacteric behaviour with ethylene playing a major role in the regulation of the ripening process and affecting the ripening rate. Crossing of Cantaloupe Charentais melon with a non-climacteric melon indicated that the climacteric character is genetically dominant and conferred by two duplicated loci only. However, other experiments made by crossing two non-climacteric melons have generated climacteric fruit, indicating that different and complex genetic regulation exists for the climacteric character. Suppression of ethylene production by antisense ACC oxidase RNA in Charentais melon has shown that, while many ripening pathways were regulated by ethylene (synthesis of aroma volatiles, respiratory climacteric and degreening of the rind), some were ethylene-independent (initiation of climacteric, sugar accumulation, loss of acidity and coloration of the pulp). Softening of the flesh comprised both ethylene-dependent and independent components that were correlated with differential regulation of cell wall degrading genes. These results indicate that climacteric (ethylene-dependent) and non-climacteric (ethylene-independent) regulation coexist during climacteric fruit ripening. In addition, ethylenesuppressed melons allowed demonstrating that the various ethylene-dependent events exhibited differential sensitivity to ethylene and that ethylene was promoting sensitivity to chilling injury. Throughout this review, the data generated with melon are compared with those obtained with tomato and other fruit

    Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.)

    Get PDF
    A 1.8 kb 5′-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from –986 to –959 and from –472 to –424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative β-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were ∼10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves

    Regulation of the Fruit-Specific PEP Carboxylase SlPPC2 Promoter at Early Stages of Tomato Fruit Development

    Get PDF
    The SlPPC2 phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) gene from tomato (Solanum lycopersicum) is differentially and specifically expressed in expanding tissues of developing tomato fruit. We recently showed that a 1966 bp DNA fragment located upstream of the ATG codon of the SlPPC2 gene (GenBank AJ313434) confers appropriate fruit-specificity in transgenic tomato. In this study, we further investigated the regulation of the SlPPC2 promoter gene by analysing the SlPPC2 cis-regulating region fused to either the firefly luciferase (LUC) or the β-glucuronidase (GUS) reporter gene, using stable genetic transformation and biolistic transient expression assays in the fruit. Biolistic analyses of 5′ SlPPC2 promoter deletions fused to LUC in fruits at the 8th day after anthesis revealed that positive regulatory regions are mostly located in the distal region of the promoter. In addition, a 5′ UTR leader intron present in the 1966 bp fragment contributes to the proper temporal regulation of LUC activity during fruit development. Interestingly, the SlPPC2 promoter responds to hormones (ethylene) and metabolites (sugars) regulating fruit growth and metabolism. When tested by transient expression assays, the chimeric promoter:LUC fusion constructs allowed gene expression in both fruit and leaf, suggesting that integration into the chromatin is required for fruit-specificity. These results clearly demonstrate that SlPPC2 gene is under tight transcriptional regulation in the developing fruit and that its promoter can be employed to drive transgene expression specifically during the cell expansion stage of tomato fruit. Taken together, the SlPPC2 promoter offers great potential as a candidate for driving transgene expression specifically in developing tomato fruit from various tomato cultivars
    corecore