39 research outputs found
Evaluation of the stress singularities of plane V-notches in bonded dissimilar materials
According to the linear theory of elasticity, there exists a combination of different orders of stress singularity at a V-notch tip of bonded dissimilar materials. The singularity reflects a strong stress concentration near the sharp V-notches. In this paper, a new way is proposed
in order to determine the orders of singularity for two-dimensional V-notch problems. Firstly, on the basis of an asymptotic stress field in terms of radial coordinates at the V-notch tip, the governing equations of the elastic theory are transformed into an eigenvalue problem of ordinary differential equations (ODEs) with respect to the circumferential coordinate h around the notch tip. Then the interpolating matrix method established by the first author is further developed to solve the general eigenvalue problem. Hence, the singularity orders of the V-notch problem are determined through solving the corresponding
ODEs by means of the interpolating matrix method. Meanwhile, the associated eigenvectors of the displacement and stress fields near the V-notches are also obtained. These functions are essential in calculating the amplitude of the stress field described as generalized stress intensity factors of the V-notches. The present method is also available to deal with the plane V-notch problems in bonded orthotropic multi-material. Finally, numerical
examples are presented to illustrate the accuracy and the effectiveness of the method
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
Self-Sustained Euler Buckling of an Optically Responsive Rod with Different Boundary Constraints
Self-sustained oscillations can directly absorb energy from the constant environment to maintain its periodic motion by self-regulating. As a classical mechanical instability phenomenon, the Euler compression rod can rapidly release elastic strain energy and undergo large displacement during buckling. In addition, its boundary configuration is usually easy to be modulated. In this paper, we develop a self-sustained Euler buckling system based on optically responsive liquid crystal elastomer (LCE) rod with different boundary constraints. The buckling of LCE rod results from the light-induced expansion and compressive force, and the self-buckling is maintained by the energy competition between the damping dissipation and the net work done by the effective elastic force. Based on the dynamic LCE model, the governing equations for dynamic Euler buckling of the LCE rod is formulated, and the approximate admissible trigonometric functions and Runge-Kutta method are used to solve the dynamic Euler buckling. Under different illumination parameters, there exists two motion modes of the Euler rod: the static mode and the self-buckling mode, including alternating and unilateral self-buckling modes. The triggering conditions, frequency, and amplitude of the self-sustained Euler buckling can be modulated by several system parameters and boundary constraints. Results indicate that strengthening the boundary constraint can increase the frequency and reduce the amplitude. It is anticipated that this system may open new avenues for energy harvesters, signal sensors, mechano-logistic devices, and autonomous robots
Self-Sustained Oscillation of a Photothermal-Responsive Pendulum under Steady Illumination
Self-sustained oscillation has the advantages of harvesting energy from the environment and self-control, and thus, the development of new self-oscillating systems can greatly expand its applications in active machines. In this paper, based on conventional photothermal shrinkable material or photothermal expansive material, a simple pendulum is proposed. The light-powered self-sustained oscillation of the simple pendulum is theoretically studied by establishing a dynamic model of the photothermal-responsive pendulum. The results show that there are two motion modes of the simple pendulum, which are the static mode and the oscillation mode. Based on the photothermal-responsive model, this paper elucidates the mechanism of the self-excited oscillation. The condition for triggering self-excited oscillation is further studied. In addition, the influence of the system parameters on the amplitude and frequency is also obtained. This study may have potential applications in energy harvesting, signal monitoring, and soft machines
Gravity-induced wrinkling of thin films on soft substrates
In this letter, we investigate the wrinkling instability of a stiff thin film bonded on a soft substrate, induced by the gravity of densely packed pillars adhered on the surface of the film. By using linear perturbation analysis, we show that the gravity of the pillars can induce wrinkling instability of the system when the gravitational force of the pillars is large enough. Our calculation results give the instability criterion and illustrate how the wavelength of the wrinkles varies with several parameters of the system. The results of this article may be useful in the applications of similar pillar structures
Self-Jumping of a Liquid Crystal Elastomer Balloon under Steady Illumination
Self-oscillation capable of maintaining periodic motion upon constant stimulus has potential applications in the fields of autonomous robotics, energy-generation devices, mechano-logistic devices, sensors, and so on. Inspired by the active jumping of kangaroos and frogs in nature, we proposed a self-jumping liquid crystal elastomer (LCE) balloon under steady illumination. Based on the balloon contact model and dynamic LCE model, a nonlinear dynamic model of a self-jumping LCE balloon under steady illumination was formulated and numerically calculated by the Runge–Kutta method. The results indicated that there exist two typical motion regimes for LCE balloon under steady illumination: the static regime and the self-jumping regime. The self-jumping of LCE balloon originates from its expansion during contact with a rigid surface, and the self-jumping can be maintained by absorbing light energy to compensate for the damping dissipation. In addition, the critical conditions for triggering self-jumping and the effects of several key system parameters on its frequency and amplitude were investigated in detail. The self-jumping LCE hollow balloon with larger internal space has greater potential to carry goods or equipment, and may open a new insight into the development of mobile robotics, soft robotics, sensors, controlled drug delivery, and other miniature device applications
Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice
The utilization of natural genetic variation greatly contributes to improvement of important agronomic traits in crops. Understanding the genetic basis for natural variation of grain size can help breeders develop high-yield rice varieties. In this study, we identify a previously unrecognized gene, named GSE5, in the qSW5/ GW5 locus controlling rice grain size by combining the genome-wide association study with functional analyses. GSE5 encodes a plasma membrane-associated protein with IQ domains, which interacts with the rice calmodulin protein, OsCaM1-1. We found that loss of GSE5 function caused wide and heavy grains, while overexpression of GSE5 resulted in narrow grains. We showed that GSE5 regulates grain size predominantly by influencing cell proliferation in spikelet hulls. Three major haplotypes of GSE5 (GSE5, GSE5(DEL1+ IN1), and GSE5(DEL2)) in cultivated rice were identified based on the deletion/insertion type in its promoter region. We demonstrated that a 950-bp deletion (DEL1) in indica varieties carrying the GSE5 DEL1+ IN1 haplotype and a 1212-bp deletion (DEL2) in japonica varieties carrying the GSE5 DEL2 haplotype associated with decreased expression of GSE5, resulting in wide grains. Further analyses indicate that wild rice accessions contain all three haplotypes of GSE5, suggesting that the GSE5 haplotypes present in cultivated rice are likely to have originated from different wild rice accessions during rice domestication. Taken together, our results indicate that the previously unrecognized GSE5 gene in the qSW5/GW5 locus, which is widely utilized by rice breeders, controls grain size, and reveal that natural variation in the promoter region of GSE5 contributes to grain size diversity in rice