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a b s t r a c t

According to the linear theory of elasticity, there exists a combination of different orders of

stress singularity at a V-notch tip of bonded dissimilar materials. The singularity reflects a

strong stress concentration near the sharp V-notches. In this paper, a new way is proposed

in order to determine the orders of singularity for two-dimensional V-notch problems.

Firstly, on the basis of an asymptotic stress field in terms of radial coordinates at the

V-notch tip, the governing equations of the elastic theory are transformed into an eigen-

value problem of ordinary differential equations (ODEs) with respect to the circumferential

coordinate h around the notch tip. Then the interpolating matrix method established by the

first author is further developed to solve the general eigenvalue problem. Hence, the sin-

gularity orders of the V-notch problem are determined through solving the corresponding

ODEs by means of the interpolating matrix method. Meanwhile, the associated eigenvec-

tors of the displacement and stress fields near the V-notches are also obtained. These func-

tions are essential in calculating the amplitude of the stress field described as generalized

stress intensity factors of the V-notches. The present method is also available to deal with

the plane V-notch problems in bonded orthotropic multi-material. Finally, numerical

examples are presented to illustrate the accuracy and the effectiveness of the method.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Recently, the development of the theory of fiber reinforced polymer (FRP) composite materials has been further moti-

vated from strengthening and repairing various engineering structures. The cases of V-notches of bonded dissimilar mate-

rials are frequently encountered in engineering applications. In such cases, there exists strong stress concentration near the

sharp notch and interface end. In particular, the peak stress at the notch tip is singular according to the theory of elasticity

and depends on the geometrical configuration and material properties of the notch. Fatigue failure of the structures usually

occurs starting from a notch tip.

For a V-notch of homogeneous elastic body with opening angle a, as shown in Fig. 1, the singular stress field near

the V-notch tip can be expressed as a series expansion with respect to the radial coordinate in the following form

[1–6]:

rij ¼ Aqk
~rijðhÞ; ð1Þ
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where the exponent k is called stress singularity order, ~rijðhÞ are the associated eigenfunctions, A is the coefficient of the

asymptopic expansion (called the generalized stress intensity factor). To study the singularity of the isotropic elastic V-

notch, Williams [1] established the characteristic equation by using the Airy stress function method, as follows:

f ðkÞ ¼ �k sinbþ sinðkbÞ ¼ 0; ð2Þ

where b = 2p � a. It can be seen that the exponent k depends on the opening angle a. The smallest real position roots k gen-

erally satisfy k 2 (�1,0) in the case a < p.

The two key aspects of solving a V-notch problem in linear elasticity are to determine stress singularities and then find

the associated amplitudes of the stress field that usually denoted as the generalized stress intensity factors of the V-notch

tip. In a general case of V-notch, the exponent k may be real or complex.

Various methods have been proposed to treat V-notch problems. Gross et al. [7,8] and Carpenter [9] obtained the general-

ized stress intensity factors for plane V-notch problems by a boundary collocation method. Boundary element method was

also used to solve the displacement and stress fields of plane V-notch problems [10,11]. In the last decade, significant more

work has been done to study V-notch problems because of an increased use of coatings and composite structures. Using Eq.

(2) as a starting point, the sub-region accelerated Müller method [12] was utilized to compute the eigenvalues of the stress

field near V-notch tips. The algebraic equation system in terms of unknown parameters in the analytical expression of the

stress field was derived by the sub-region mixed energy principle, by which the stress amplitudes were also calculated. Jian

et al. [13] evaluated the stress exponents of V-notches made of bonded bimaterial, using a complex potential theory and

Newton’s iteration method. The stress amplitudes were then obtained in conjunction with the use of hybrid finite element.

Gadi et al. [14] derived the analytical formulations of thermally induced logarithmic stress singularities in a composite

wedge composed of incompressible materials. Through using the state space method for a plane notch formed from several

bonded anisotropic materials, Li et al. [15] established a governing eigenequation according to the elasticity theory, which

can provide the stress singularity orders of the V-notches by means of an iteration technique for roots finding. By applying

the Lekhnitskii formalism and Stroh formalism [16], Ting [17] studied the solutions of the stress fields of general anisotropic

elastic materials and composites, in which the explicit expressions of the stress functions of some cases were presented as

the form of a sextic equation. With the same way, the study of stress singularities at the tip of a V-notch that consists of an

arbitrary number of dissimilar anisotropic elastic wedges was given by Ting [18]. After then, Hwu et al. [19] deduced an ex-

plicit closed-form eigenequation for determining the singular order near the anisotropic elastic composite wedge apex. Since

the singular orders k appear in the eigenequation as some nonlinear forms, an iteration technique should be needed to search

the solutions of the singular orders from the associated determinant of the eigenequation for general V-notch problems.

With the solutions of stress singularities, Labossiere and Dunn [20] and Hwu and Kuo [21] computed the stress intensity

factors through the near tip displacement and stress fields from the conventional finite element analysis as well as the cal-

culation of the path-independent H-integral [22]. Chue and Liu [23], Wigger and Becker [24] obtained the eigenequations of

the plane anisotropic wedges by using Lekhnitskii’s complex function method, which were used to calculate the stress sin-

gularity orders. Sue et al. [25] used complex potential function and eigenfunction expansion method to determine the stress

singularity order of a magnetoelectroelastic bonded antiplane wedge.

The above mentioned research works are difficult to find the associated eigenfunctions ~rijðhÞ related to multiple singular-

ity orders of the V-notches. It is naturally considered that the conventional finite element method and boundary element

method can model the singular stress field by increasing the mesh density in the notch tip region. Unfortunately, the

improvement on the accuracy of the approaches is very limited in comparison with increasing a large amount of the com-

putation time. Recently, a special finite element method was used to deal with some V-notch problems based on the assump-

tion of asymptotic expansion of the stress field near V-notch tips. For the V-notch and line crack shown in Fig. 1, Seweryn

[26] taken two or three leading terms of the asymptotic expansion in Eq. (1) as the analytical constrains of stress field in the

notch tip region. Then the analytical elements are applied in order to model the stress field in the core region around the

singular tip. The remaining area of the structure can be modeled using the conventional finite elements. The approach

can provide two or three singular exponents and stress amplitudes. It should be noted that the way need to know the ana-

lytical constrains like ~rijðhÞ in Eq. (1) before evaluating the singular exponent and stress field around the notch tip. Three

leading terms of the analytical constrains were found only in the case of homogeneous isotropic crack [2]. However, the ana-

lytical constrains are difficult to be found prior to the evaluation of the stress singularity order of general V-notch problems

of bonded dissimilar multi-material. Hence some approximate constrain functions ~rijðhÞ are proposed to support the way.

α

ρ

θ

Fig. 1. A V-notch with opening angle a.
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According to the idea, Carpinteri et al. [27] calculated the first leading singular exponent and mode I stress amplitude for the

multi-layered beam with a crack or re-entrant corner symmetrically meeting a bimaterial interface with the finite element

method. Chen and Sze [3] proposed a new eigenanalysis method with hybrid finite element and the assumption of asymp-

totic expansion to determine the stress exponents and stress amplitudes of bonded bimaterial V-notches.

The aim of this paper is to study the stress singularities of plane V-notch problems of bonded dissimilar materials. The

governing equations of linear elasticity are transformed to eigenvalue problems of ordinary differential equations (ODEs)

based on the assumption that the stress fields are asymptotic near the V-notch tips. The first author [28] established the

interpolating matrix method to solve two-point boundary value problems of ODEs. The method is further developed in

the present work to analyze eigenvalue problems of ODEs. As an application, the stress singularity orders and the associated

eigenvectors are obtained by applying the interpolating matrix method to the ODEs of V-notches.

2. The eigenvalue problems of ODEs for plane V-notches in linear elasticity

Firstly, let us consider a V-notch of isotropic material with opening angle 2p � h1 � h2 as shown in Fig. 2. Define a polar

coordinate system (q,h), taking the notch tip as origin. In the linearly elastic analysis, it has been verified that the displace-

ment field in the notch tip region can be expressed as a series expansion with respect to the radial coordinate q originating

from the notch tip [4]. One typical term of the series can be written in the following form:

uqðq; hÞ ¼ qkþ1~uqðhÞ; ð3aÞ
uhðq; hÞ ¼ qkþ1~uhðhÞ; ð3bÞ

where k; ~uqðhÞ and ~uhðhÞ are eigenpairs. Introducing Eq. (3) into the strain–displacement relations of linearly elastic theory

yields the strain components as

eqq ¼ ð1þ kÞqk~uqðhÞ; ð4aÞ
ehh ¼ qk~uqðhÞ þ qk~u0

hðhÞ; ð4bÞ
cqh ¼ qk~u0

qðhÞ þ kqk~uhðhÞ; ð4cÞ

where (� � �)0 = d(� � �)/dh. From linearly elastic behavior law (Hooke’s law) of plane stress problems, the plane stresses are ex-

pressed as

rqq ¼
E

1� m2
qk½ð1þ kÞ~uq þ m~uq þ m~u0

h�; ð5aÞ

rhh ¼
E

1� m2
qk½ð1þ kÞm~uq þ ~uq þ ~u0

h�; ð5bÞ

rqh ¼
E

2ð1þ mÞq
kðk~uh þ ~u0

qÞ; ð5cÞ

where E is Young’s modulus and m, Poisson’s ratio. Notice that the eigenpairs in Eq. (3) depend on the configurations (wedge

angles), material properties and boundary conditions of the V-notches, which are not influenced by any load. Thus the body

forces are neglected and then the equilibrium equations are

orqq

oq
þ 1

q

orqh

oh
þ rqq � rhh

q
¼ 0; ð6aÞ

1

q

orhh

oh
þ orqh

oq
þ 2rqh

q
¼ 0: ð6bÞ

Substituting Eq. (5) into Eq. (6) gives

~u00
q þ

1þ m

1� m
k� 2

� �

~u0
h þ

2

1� m
kðkþ 2Þ~uq ¼ 0; h 2 ðh1; h2Þ; ð7aÞ

~u00
h þ 2þ 1

2
ð1þ mÞk

� �

~u0
q þ

1

2
ð1� mÞkðkþ 2Þ~uh ¼ 0; h 2 ðh1; h2Þ: ð7bÞ

o

ρ

1θ

θ

2θ
2Γ

1Γ

Fig. 2. Geometry near a V-notch.
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Assume that all the tractions on the two edges, C1 and C2, near the notch tip are zero. That is

rhh

rqh

� �

h¼h1

¼
rhh

rqh

� �

h¼h2

¼
0

0

� �

: ð8Þ

Hence, substitution of Eq. (5) into Eq. (8) yields

~u0
h þ ð1þ mþ mkÞ~uq ¼ 0; h ¼ h1 and h2; ð9aÞ

~u0
q þ k~uh ¼ 0; h ¼ h1 and h2: ð9bÞ

Considering that the appearance of k2 in Eq. (7) leads to nonlinear eigenanalysis if Eq. (7) is directly solved, an alternative

approach is adopted in this paper to transfer the equation into a linear eigenvalue problem. To this end, two new field vari-

ables are introduced as follows:

gqðhÞ ¼ k~uqðhÞ; h 2 ðh1; h2Þ; ð10aÞ
ghðhÞ ¼ k~uhðhÞ; h 2 ðh1; h2Þ: ð10bÞ

Thus, Eq. (10), Eq. (7) can been rewritten as

~u00
q þ

1þ m

1� m
k� 2

� �

~u0
h þ

2

1� m
ðkþ 2Þgq ¼ 0; h 2 ðh1; h2Þ; ð11aÞ

~u00
h þ 2þ 1

2
ð1þ mÞk

� �

~u0
q þ

1

2
ð1� mÞðkþ 2Þgh ¼ 0; h 2 ðh1; h2Þ: ð11bÞ

By following the above procedure, the evaluation of the singularity orders near a V-notch tip is transformed to solving a lin-

ear eigenvalue problem of the ODEs governed by Eqs. (10) and (11) subjected to the boundary condition of Eq. (9). In the

solutions the associated eigenfunctions ~uq and ~uh can also be obtained and can be used to determine the stresses in the vicin-

ity of the notch tip.

3. Evaluation of the stress singularities of V-notches of bonded dissimilar materials

Consider a V-notch problem of bonded bimaterial, as seen in Fig. 3. The body consists of two subdomains of different

materials. E1 and m1 are, respectively, Young’s modulus and Poisson’s ratio of subdomain X1, and E2 and m2 are ones of sub-

domain X2. From the above derivation, it is obvious that Eqs. (10) and (11) are valid for each subdomain for analyzing the

stress singularity orders near the interface tip of the dissimilar materials. Thus, the respective governing equations in the two

subdomains are written as

~u00
1q þ

1þ m1

1� m1
k� 2

� �

~u0
1h þ

2

1� m1
ðkþ 2Þg1q ¼ 0; h 2 ðh1; h2Þ; ð12aÞ

~u00
1h þ 2þ 1

2
ð1þ m1Þk

� �

~u0
1q þ

1

2
ð1� m1Þðkþ 2Þg1h ¼ 0; h 2 ðh1; h2Þ; ð12bÞ

g1qðhÞ ¼ k~u1qðhÞ; h 2 ðh1; h2Þ; ð13aÞ
g1hðhÞ ¼ k~u1hðhÞ; h 2 ðh1; h2Þ ð13bÞ

and

~u00
2q þ

1þ m2

1� m2
k� 2

� �

~u0
2h þ

2

1� m2
ðkþ 2Þg2q ¼ 0; h 2 ðh2; h3Þ; ð14aÞ

~u00
2h þ 2þ 1

2
ð1þ m2Þk

� �

~u0
2q þ

1

2
ð1� m2Þðkþ 2Þg2h ¼ 0; h 2 ðh2; h3Þ; ð14bÞ

o

ρ

1θ

θ

3θ
3Γ

1Γ

2θ

2Ω

1Ω

2Γ
interface

Fig. 3. A V-notch of bonded bimaterial.
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g2qðhÞ ¼ k~u2qðhÞ; h 2 ðh2; h3Þ; ð15aÞ
g2hðhÞ ¼ k~u2hðhÞ; h 2 ðh2; h3Þ; ð15bÞ

where ~u1qðhÞ; ~u1hðhÞ are the eigenfunctions of displacement components in subdomain X1 near the notch tip; ~u2qðhÞ; ~u2hðhÞ are
the corresponding functions in subdomain X2. For the bonded bimaterial, the continuity conditions of displacement compo-

nents and the interface tractions must be satisfied on C2, i.e.,

~u1qðh2Þ ¼ ~u2qðh2Þ; ð16aÞ
~u1hðh2Þ ¼ ~u2hðh2Þ ð16bÞ

and

r1hh

r1qh

� �

h¼h2

¼
r2hh

r2qh

� �

h¼h2

: ð17Þ

Substitution of Eq. (5) into Eq. (17) gives

E1

1� m21
½~u0

1h þ ð1þ m1 þ m1kÞ~u1q� �
E2

1� m22
½~u0

2h þ ð1þ m2 þ m2kÞ~u2q� ¼ 0; h ¼ h2; ð18aÞ

E1

2ð1þ m1Þ
ð~u0

1q þ k~u1hÞ �
E2

2ð1þ m2Þ
ð~u0

2q þ k~u2hÞ ¼ 0; h ¼ h2: ð18bÞ

Similar to Eq. (9), applying the traction-free boundary conditions on C1 and C3 yields

~u0
1h þ ð1þ m1 þ m1kÞ~u1q ¼ 0; h ¼ h1; ð19aÞ

~u0
1q þ k~u1h ¼ 0; h ¼ h1; ð19bÞ

~u0
2h þ ð1þ m2 þ m2kÞ~u2q ¼ 0; h ¼ h3; ð20aÞ

~u0
2q þ k~u2h ¼ 0; h ¼ h3: ð20bÞ

Thus, the evaluation of the singularity orders k near the V-notch tip of bonded bimaterial has been transformed into solving

ODEs Eqs. (12)–(15) subjected to boundary conditions Eqs. (16), (18)–(20).

4. Evaluation of the stress singularities of V-notches of orthotropic materials

Consider a plane V-notch problem of orthotropic material, as seen in Fig. 4. Two principal axes of the orthotropic material

are denoted Axes 1 and 2, respectively. h0 is the angle between Axis 1 and x-direction of the Cartesian coordinate system oxy.

oqh is a polar coordinate system where the notch tip is the pole. E11 and E22 are the elastic moduli of the orthotropic material

in 1-direction and 2-direction, respectively, G12 is the shear modulus, and m12 is Poisson’s ratio.

In the same way, the displacement field, Eq. (3), in the notch tip region is also acceptable for the plane V-notch problem of

orthotropic material.

In the polar coordinate system oqh, the strain–stress relationships can be written as

rqq

rhh

rqh

8

><

>:

9

>=

>;

¼
D11 D12 D16

D12 D22 D26

D16 D26 D66

2

6
4

3

7
5

eqq

ehh

eqh

8

><

>:

9

>=

>;

; ð21Þ

o

ρ

1θ

0θ

2θ
2Γ

1Γ

θ

y

x

1
2

Fig. 4. A V-notch of orthotropic material.
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where

D11 ¼ p1 cos
4ð�hÞ þ p2 sin

4ð�hÞ þ 2 cos2ð�hÞ sin2ð�hÞð2G12p3 þ p4Þ
p3

;

D12 ¼ p4ðcos4ð�hÞ þ sin4ð�hÞÞ þ cos2ð�hÞ sin2ð�hÞðp1 þ p2 � 4G12p3Þ
p3

;

D16 ¼ cosð�hÞ sinð�hÞ p1 cos
2ð�hÞ � p2 sin

4ð�hÞ þ ðsin2ð�hÞ � cos2ð�hÞÞð2G12p3 þ p4Þ
p3

;

D22 ¼ p2 cos
4ð�hÞ þ p1 sin

4ð�hÞ þ 2 cos2ð�hÞ sin2ð�hÞð2G12p3 þ p4Þ
p3

;

D26 ¼ cosð�hÞ sinð�hÞ p1 sin
2ð�hÞ � p2 cos

4ð�hÞ � ðsin2ð�hÞ � cos2ð�hÞÞð2G12p3 þ p4Þ
p3

;

D66 ¼ G12p3ð1� 4 cos2ð�hÞ sin2ð�hÞÞ þ sin
2ð�hÞ cos2ð�hÞðp1 þ p2 � 2p4Þ

p3

;

�h ¼ h0 � h:

ð22Þ

For the plane stress problem, there are

p1 ¼ �E2
11; p2 ¼ �E11E22; p3 ¼ t212E22 � E11; p4 ¼ t12E11E22: ð23Þ

Substitution of Eq. (4) into Eq. (21) yields the stress components as

rqq ¼ qk½D16~u
0
qðhÞ þ D12~u

0
hðhÞ þ ðD11 þ D12Þ~uqðhÞ þ kðD11~uqðhÞ þ D16~uhðhÞÞ�; ð24aÞ

rhh ¼ qk½D26~u
0
qðhÞ þ D22~u

0
hðhÞ þ ðD12 þ D22Þ~uqðhÞ þ kðD12~uqðhÞ þ D26~uhðhÞÞ�; ð24bÞ

rqh ¼ qk½D66~u
0
qðhÞ þ D26~u

0
hðhÞ þ ðD16 þ D26Þ~uqðhÞ þ kðD16~uqðhÞ þ D66~uhðhÞÞ�: ð24cÞ

According to the same derivations as Section 2, by substituting Eq. (24) into the equilibrium equations Eq. (6) and introduc-

ing the two field variables gq(h) and gh(h), one can obtain the ODE of the plane V-notch problems of orthotropic material as

follows:

gq ¼ k~uq; h 2 ½h1; h2�; ð25aÞ
gh ¼ k~uh; h 2 ½h1; h2�; ð25bÞ
D66~u

00
q þ D26~u

00
h þ 2D16~u

0
q þ ðD12 � D22Þ~u0

h þ ðD11 � D22Þ~uq þ k½2D16~u
0
q þ ðD12 þ D66Þ~u0

h þ 2D11~uq

þ ðD16 � D26Þ~uh� þ k½D11gq þ D16gh� ¼ 0; h 2 ½h1; h2�; ð25cÞ
D26~u

00
q þ D22~u

00
h þ ðD12 þ D22 þ 2D66Þ~u0

q þ 2D26~u
0
h þ 2ðD16 þ D26Þ~uq þ k½ðD12 þ D66Þ~u0

q

þ 2D26~u
0
h þ ð3D16 þ D26Þ~uq þ 2D66~uh� þ k½D16gq þ D66gh� ¼ 0; h 2 ½h1; h2�: ð25dÞ

If the traction-free surfaces on C1 and C2 are assumed, introduction of Eq. (24) into Eq. (8) results in the boundary con-

ditions related to the ODE Eq. (25) as follows:

D26~u
0
q þ D22~u

0
h þ ðD12 þ D22Þ~uq þ k½D12~uq þ D26~uh� ¼ 0; h ¼ h1 and h2; ð26aÞ

D66~u
0
q þ D26~u

0
h þ ðD16 þ D26Þ~uq þ k½D16~uq þ D66~uh� ¼ 0; h ¼ h1 and h2: ð26bÞ

If the V-notch is fixed surface on C1 or C2, the boundary condition can easily be expressed as

~uq ¼ 0; h ¼ h1 or h2; ð26cÞ
~uh ¼ 0; h ¼ h1 or h2: ð26dÞ

Hence, the evaluation of the singularity orders k and the associated eigenfunctions ~uq and ~uh near the V-notch tip of ortho-

tropic material has been also transformed into solving ODEs Eq. (25) subjected to boundary conditions Eq. (26).

Furthermore, for the solutions of plane V-notch problems of bonded dissimilar multi-material, including the orthotropic

materials and anisotropic materials, the same deduction process as shown above can be implemented to compute eigenso-

lutions of the associated ODEs, by which the stress singularity near the V-notch is then determined. This process will produce

a set of ODEs that are similar to Eqs. (14)–(16), (18), (20), (25) and (26).

In order to find the solution of the ODEs derived above, in what follows, a numerical method is presented to solve the

eigenvalue problems of the ODEs.

5. Interpolating matrix method for solving eigenvalue problems of ODEs

With the development of modern computer techniques, numerical methods have been proposed to solve two-point

boundary value problems (BVPs) of ODEs. At present, the most commonly used methods for solving ODEs are the finite dif-

ference, shooting and collocation methods. On the basis of the above algorithms, several general-purpose computer routines

have been designed as solvers of the BVPs of ODEs. These solvers include PASVA, BOUNDS, SUPORT [29] and COLSYS [30]. The

first author [28] established a numerical method by the name of interpolating matrix method to solve BVPs of ODEs, by which

Z. Niu et al. / Applied Mathematical Modelling 33 (2009) 1776–1792 1781



Author's personal copy

the highest derivative appearing in the ODEs is chosen as the unknown parameter of the discrete ODE system. In general,

most of the existing methods, including the above mentioned ones, have their own merits and are complementary, depend-

ing on the nature of the problems to be solved. However, most of the above solvers deal with two-point BVPs only. To solve

the V-notch problems, an efficient method to deal with eigenvalue problems of ODEs is apparently needed. In the present

paper, the interpolating matrix method is further developed to solve the above mentioned eigenvalue problems.

Let us consider a set of general linear ODEs, as shown below:

Xr

k¼1

Xmk

j¼0

gikjðxÞyðjÞk ðxÞ � k
Xr

k¼1

Xmk

j¼0

qikjðxÞyðjÞk ðxÞ ¼ fiðxÞ; i ¼ 1ð1Þr; x 2 ½a; b� ð27Þ

subjected to the following boundary conditions:

Xr

k¼1

Xmk�1

j¼0

alkjy
ðjÞ
k ðnlkjÞ � k

Xr

k¼1

Xmk�1

j¼0

blkjy
ðjÞ
k ðnlkjÞ ¼ cl; l ¼ 1ð1Þt; a 6 nlkj 6 b; ð28Þ

where the symbol 1(1)r denotes 1,2, . . . ,r; fi(x), gikj(x) and qikj(x) 2 c0[a,b] are known functions with respect to x;mk stands for

the highest order of the derivative of each undetermined function yk(x) in Eq. (27); yðjÞ
k

stands for the jth order derivative of

the function yk(x); t ¼
Pr

k¼1mk is the number of the boundary conditions Eq. (28); alkj, blkj and cl are known real scalars. nlkj
can be arbitrary values in the interval [a,b], which express that Eq. (28) can be multi-point boundary conditions. Notice that

when fi(x) and cl are identically zero, Eqs. (27) and (28) form an eigenvalue problem of the ODEs, where k is the associated

eigen-parameter.

The interval [a,b] is divided into n subintervals at divisions a = x0,x1, . . . ,xn = b. Let hi = xi � xi�1 be the length of the ith sub-

interval. Applying Eq. (27) at each of the divisions xi, (i = 0,1, . . . ,n), results in

Xr

k¼1

Xmk

j¼0

GikjY
ðjÞ
k
ðxÞ � k

Xr

k¼1

Xmk

j¼0

Q ikjY
ðjÞ
k
ðxÞ ¼ 0; i ¼ 1ð1Þr; ð29Þ

where

Gikj ¼ diagðgikjðx0Þ; gikjðx1Þ; . . . ; gikjðxnÞÞ;
Q ikj ¼ diagðqikjðx0Þ; qikjðx1Þ; . . . ; qikjðxnÞÞ;
Y

ðjÞ
k ðxÞ ¼ ðyjkðx0Þ; y

j
kðx1Þ; . . . ; y

j
kðxnÞÞ

T; k ¼ 1ð1Þr; j ¼ 0ð1Þmk:

Let yðjÞki denote the approximate values of yðjÞk ðxÞ at xi, i = 1(1)n. The well-known finite difference method takes yki at the divi-

sions xi as the basic unknowns of the algebraic equations of the discrete system. Instead, the interpolating matrix method

takes yk0; y
0
k0; . . . ; y

ðmk�1Þ
k0 ; y

ðmkÞ
k0 ; y

ðmkÞ
k1 ; . . . ; y

ðmkÞ
kn ðk ¼ 1ð1ÞrÞ as the basic unknowns after discretization. As a result, the (j � 1)th or-

der derivative of yk(x) can be expressed in terms of its jth order derivative based on the following integration:

y
ðj�1Þ
k

ðxiÞ � y
ðj�1Þ
k

ðx0Þ ¼
Z xi

x0

y
ðjÞ
k
ðxÞdx; j ¼ 1ð1Þmk; k ¼ 1ð1Þr; i ¼ 1ð1Þn: ð30Þ

Within interval [a,b], yðjÞk ðxÞ can be approximated with the piecewise polynomial interpolation as

y
ðjÞ
k ðxÞ ¼

Xn

i¼0

y
ðjÞ
k ðxiÞLiðxÞ þ d

ðjÞ
knðxÞ; x 2 ½a; b�; ð31Þ

where Li(x) are the Lagrangian interpolation polynomials and d
ðjÞ
knðxÞ are the residual errors. Introduce the following

notations:

xli ¼
Z xl

x0

LiðxÞdx; i; l ¼ 0ð1Þn; ð32aÞ

Ykðx0Þ ¼ ðykðx0Þ; y0kðx0Þ; . . . ; y
ðmk�1Þ
k ðx0ÞÞT; Yk0 ¼ ðyk0; y0k0; . . . ; y

ðmk�1Þ
k0 ÞT;

Y
ðjÞ
k ¼ ðyðjÞk0; y

ðjÞ
k1; . . . ; y

ðjÞ
knÞ

T; r ¼ ð1;1; . . . ;1ÞTðnþ1Þ; ð32bÞ

R
ðjÞ
kl

¼
Z xl

x0

d
ðjÞ
kn
ðxÞdx; R

ðjÞ
k

¼ ðRðjÞ
k0;R

ðjÞ
k1; . . . ;R

ðjÞ
kn
ÞT: ð32cÞ

Substituting Eq. (31) into (30), and calculating the integrals for i = 0,1, . . . ,n, one obtains

Y
ðj�1Þ
k

ðxÞ ¼ y
ðj�1Þ
k

ðx0Þrþ DY
ðjÞ
k
ðxÞ þ R

ðjÞ
k
; x 2 ½a; b�: ð33Þ

In Eq. (33), D = [xli] is an (n + 1) � (n + 1) matrix whose elements are calculated from the integral in Eq. (32a) and, therefore,

called integral matrix. For the piecewise linear interpolation, the basis functions in Eq. (31) are

LiðxÞ ¼
ðx� xi�1Þ=hi; x 2 ½xi�1; xi�;
�ðx� xiþ1Þ=hiþ1; x 2 ½xi; xiþ1�;
0; others:

8

><

>:

ð34aÞ
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Substituting Eq. (34a) into Eq. (32a) and calculating the integrals xli, (i, l = 0(1)n), we gain the integral matrix with the linear

interpolation which can be written as

D ¼ 0:5

0 0 � � � 0 0

1 1 � � � 0 0

..

. ..
. . .

. ..
.

1 1 � � � 1 0

1 1 � � � 1 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

0 0 � � � � � � 0

h1 h1
.
.

.
0

0 h2 h2
. .
. ..

.

..

. . .
. . .

. . .
.

0

0 � � � 0 hn hn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ðnþ1Þ�ðnþ1Þ

ð34bÞ

Thus, for an arbitrary j, the recurrence relation of Eq. (33) results in

Y
ðjÞ
k ðxÞ ¼ PkjYkðx0Þ þ Dmk�jY

ðmkÞ
k ðxÞ þ r

ðjÞ
k ; k ¼ 1ð1Þr; j ¼ 1ð1Þðmk � 1Þ; ð35Þ

where

r
ðjÞ
k ¼

Xmk�1�j

l¼0

½DlR
ðjþ1þlÞ
k � ð36Þ

are the local truncated errors of YðjÞ
k ðxÞ, and

Pkj ¼ ½0; . . . ;0
zfflfflfflffl}|fflfflfflffl{

j

; r;Dr; . . . ;Dmk�1�j
r�ðnþ1Þ�mk

ð37Þ

is an (n + 1) �mk matrix. Ignoring r
ðjÞ
k

in Eq. (35) yields

Y
ðjÞ
k

¼ PkjYk0 þ Dmk�jY
ðmkÞ
k

; k ¼ 1ð1Þr; j ¼ 1ð1Þðmk � 1Þ: ð38Þ

It can be seen from Eq. (38) that YðjÞ
k

have been represented by Yk0 and Y
ðmkÞ
k

. Substituting Eq. (38) into Eq. (29) gives the fol-

lowing algebraic equations:

Xr

k¼1

½AikYk0 þ BikY
ðmkÞ
k � � k

Xr

k¼1

½AkikYk0 þ BkikY
ðmkÞ
k � ¼ 0; ð39Þ

where Aik and Akik are (n + 1) �mk matrices; Bik and Bkik are (n + 1) � (n + 1) matrices. They are, respectively

Aik ¼
Xmk�1

j¼0

GikjPkj; Bik ¼
Xmk

j¼0

GikjD
mk�j; Akik ¼

Xmk�1

j¼0

Q ikjPkj; Bkik ¼
Xmk

j¼0

Q ikjD
mk�j: ð40Þ

Without loss of generality, consider that the nlkj in Eq. (28) take the interval divisions at xIl ð0 6 Il 6 nÞ within [a,b]. In the

case of the so-called two-point BVPs, Il take 0 and n where nlkj have the values of a and b. Introducing Eq. (38) into Eq. (28)

and letting cl = 0 yield the following eigenvalue problem:

Xr

k¼1

Xmk�1

j¼0

alkj ðPkjÞIlYk0 þ ðDmk�jÞIlY
ðmkÞ
k

h i

� k
Xr

k¼1

Xmk�1

j¼0

blkj ðPkjÞIlYk0 þ ðDmk�jÞIlY
ðmkÞ
k

h i

¼ 0; ð41Þ

where ðPkjÞIl and DIl denote the Ilth row of matrices Pkj and D, respectively. Introducing the following notations into Eq. (41)

Valk ¼
Xmk�1

j¼0

alkjðPkjÞIl ; Walk ¼
Xmk�1

j¼0

alkjðDmk�jÞIl ; ð42aÞ

Vblk ¼
Xmk�1

j¼0

blkjðPkjÞIl ; Wblk ¼
Xmk�1

j¼0

blkjðDmk�jÞIl ; l ¼ 1ð1Þt ð42bÞ

and rewriting the equation, one obtains

Xr

k¼1

ðValkYk0 þWalkY
ðmkÞ
k Þ � k

Xr

k¼1

ðVblkYk0 þWblkY
ðmkÞ
k Þ ¼ 0: ð43Þ

Using the following notations:

Y0 ¼

Y10

Y20

..

.

Yr0

8

>>>><

>>>>:

9

>>>>=

>>>>;

t

; Y ¼

Y
ðm1Þ
1

Y
ðm2Þ
2

..

.

YðmrÞ
r

8

>>>>><

>>>>>:

9

>>>>>=

>>>>>;

rðnþ1Þ

; t ¼
Xr

k¼1

mk; ð44Þ
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Va ¼ ½Valk�t�t ; Wa ¼ ½Walk�t�rðnþ1Þ; Vb ¼ ½Vblk�t�t ; Wb ¼ ½Wblk�t�rðnþ1Þ; k ¼ 1ð1Þr; l ¼ 1ð1Þt; ð45aÞ
A ¼ ½Aik�rðnþ1Þ�t; B ¼ ½Bik�rðnþ1Þ�rðnþ1Þ; Ak ¼ ½Akik�rðnþ1Þ�t ; Bk ¼ ½Bkik�rðnþ1Þ�rðnþ1Þ; i; k ¼ 1ð1Þr ð45bÞ

and converting Eqs. (39) and (43) into a combined matrix form, we arrive finally at

Va Wa

A B

� �
Y0

Y

� �

� k
Vb Wb

Ak Bk

� �
Y0

Y

� �

¼ 0: ð46Þ

Eq. (46) is a generalized eigenequation system of r(n + 1) + t orders in the unknowns ðYT
0;Y

TÞT. It can always be converted into

a standard eigenvalue formulation through the following transformation:

C�1
2 C1

Y0

Y

� �

� k
Y0

Y

� �

¼ 0 or
1

k

Y0

Y

� �

� C�1
1 C2

Y0

Y

� �

¼ 0; ð47Þ

where

C1 ¼ Va Wa

A B

� �

; C2 ¼ Vb Wb

Ak Bk

� �

: ð48Þ

Numerical methods from various textbooks about numerical analyses are available to solve the algebraic eigenvalue equa-

tions like Eq. (47). In general, the solutions of Eq. (47) provide a finite number of eigenvalues, k, and the associated eigen-

vectors ðYT
0;Y

TÞT. Furthermore the substitution of ðYT
0;Y

TÞTinto Eq. (38) gives the eigenvectors of all the derivatives of

yk(x), i.e. Yk;Y
0
k; . . . ;Y

ðmk�1Þ
k ; ðk ¼ 1ð1ÞrÞ.

It can be seen from the above deduction that the formations of the coefficient matrices in Eq. (47) rely on the integral

matrix D besides those known functions and parameters in ODEs (27) and (28). In the interpolating matrix method, Eq.

(46) or (47) is used to solve the eigenvalue problems of ODEs (27) with the boundary conditions (28), in which the computed

error arises from the local truncated errors rðjÞk in Eq. (35). Thus the accuracy of the interpolating matrix method depends on

the integral matrix which represents the influence of a piecewise polynomial interpolation to approximate y
ðjÞ
k ðxÞ. Generally,

the integral matrix D with the piecewise quadratic or spline function interpolation is encouraged because of their higher or-

der approximation in comparison with the linear one.

It has been found that for analyzing two-point BVPs of ODEs, in addition to the same some merits as the finite difference

and collocation methods, the interpolating matrix method has two distinct advantages as: (1) All functions and their deriv-

atives appearing in the BVPs of ODEs are simultaneously obtained with the same degree of accuracy. This feature is partic-

ularly beneficial to the calculation of stress field that requires the first derivative of the displacement functions. (2) It can

solve the general eigenvalue problems of ODEs and be convenient to write a general-purpose routine, since the implemen-

tary procedure has been expressed as the above unified formulations, especially for the boundary conditions Eq. (28). More-

over, all the solutions corresponding each eigenpair are also obtained with the same degree of accuracy.

According to the above formulations, a general-purpose routine called IMMEI is developed in FORTRAN, in which the

interpolating matrix method is adopted to solve two-point eigenvalue problem in ODEs expressed in the form of Eqs.

(27) and (28).

6. Numerical examples

6.1. Numerical example of solving eigenvalue problems

Before applying the above developed method to V-notch problems, a simple example is shown here to illustrate the effec-

tiveness of the new approach.

Example 1. Bending vibration of a uniform beam hinged at both ends (Fig. 5).

The free vibration equation of the beam is

d
4
YðxÞ
dx4

� b4YðxÞ ¼ 0; b4 ¼ x2m

EI
; x 2 ½0; L�; ð49aÞ

y

L
x

Fig. 5. A simply-supported beam.
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where Y(x) is the natural mode of transverse displacement; x is the natural frequency; L is the length of the beam; EI denotes

the flexural rigidity and m the mass per unit length. Here, both EI and m are constant. At the two ends, the boundary con-

ditions are, respectively,

Yð0Þ ¼ 0; Y 00ð0Þ ¼ 0; YðLÞ ¼ 0; Y 00ðLÞ ¼ 0: ð49bÞ

Y(x) and x are determined by solving the eigenvalue problem of Eq. (49), for which exact solutions are available and are

xi ¼ ðipÞ2
ffiffiffiffiffiffiffiffiffi

EI

mL4

s

; i ¼ 1;2; . . . ; ð50aÞ

Y iðxÞ ¼ Ai sin
ipx

L
; ð50bÞ

where Ai are amplitudes of the mode shapes.

To assess accuracy of the interpolating matrix method (IMMEI), linear and quadratic interpolation functions are used,

respectively, to compute the eigenpairs. Here the interval [0,L] is divided into three uniformmeshes with the number of sub-

intervals being (n=) 20, 40 and 80, respectively. The solutions of IMMEI in the three meshes are presented to show the con-

vergence rate of the interpolating matrix method as the number of the divisions doubly increases. Table 1 shows the relative

errors of the computed eigenvalues xi using IMMEI in comparison with the exact solutions. The relative errors of the solu-

tions Y iðxÞ;Y 0
iðxÞ;Y

00
i ðxÞ and Y 000

i ðxÞ of the first four modes using IMMEI with the piecewise quadratic D and n = 80 are plotted in

Figs. 6–9, in turn. In Table 1 and Figs. 6–9, the err% means the relative error defined by below:

err% ¼ solutionapprox � solutionexact

solutionexact

� 100: ð51Þ

All of the eigenpairs and their derivatives of various orders of Yi(x) are simultaneously computed by IMMEI for each mesh.

Among them, the computational accuracy of the first eigensolution is highest, whose relative error is about 10�5 shown in

Table 1 and Fig. 6 when the quadratic Dwith n = 80 is chosen. The accuracy of the solutions is lost gradually for higher modes

in the discrete model. Obviously, accuracy can be improved by increasing the number of the divisions of the discrete system.

Comparatively, the accuracy using the quadratic D is very higher than one using the linear D on the same number of the

divisions. Many numerical experiments have illustrated that the convergence rates of the present method are about O(h4)

for the quadratic D and O(h2) for the linear D, respectively, where h is the length of the subinterval.

Table 1

The natural frequencies xið
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI=mL4
q

Þ and the relative errors (%) of the IMMEI solutions

Modes Exact solutions xi err% of IMMEI with the linear D err% of IMMEI with the quadratic D

n = 20 n = 40 n = 80 n = 20 n = 40 n = 80

First p2 0.4127 0.1029 0.02571 0.001356 0.0001004 0.0000068

Second 4p2 1.6682 0.4127 0.1029 0.02183 0.001607 0.000108

Third 9p2 3.8210 0.9326 0.2318 0.1116 0.008139 0.000548

Fourth 16p2 6.9676 1.6682 0.4127 0.3575 0.02574 0.001733

Fifth 25p2 11.257 2.6275 0.6461 0.8873 0.06288 0.004229

Sixth 36p2 3.8210 0.9326 1.8773 0.13050 0.008767

Seventh 49p2 5.2621 1.2730 3.5648 0.24205 0.01624

0.0 0.2 0.4 0.6 0.8 1.0

-0.000002

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

0.000014

0.000016

0.000018

R
e
la

ti
v
e
 e

rr
o
rs

 o
f 

1
st

 m
o
d
e
 

X/L

 Y'''(X)  

 Y''(X)

 Y'(X)

 Y(X)

Fig. 6. The computational errors of first mode and its derivatives of higher orders, n = 80.
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In addition, as an advantage of the present method, it can be seen in Table 1 and Figs. 6–9 that all of the solutions

Y iðxÞ;Y 0
iðxÞ;Y

00
i ðxÞ and Y 000

i ðxÞ for each mode have the same degree of accuracy as the associated natural frequency in terms

of their maximum relative errors as comparisons. However, in the finite element and finite difference approaches, the accu-

racy of the derivatives of higher orders of the modes is lost rapidly because of using the difference.
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Fig. 7. The computational errors of second mode and its derivatives of higher orders, n = 80.
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Fig. 8. The computational errors of third mode and its derivatives of higher orders, n = 80.
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Fig. 9. The computational errors of fourth mode and its derivatives of higher orders, n = 80.
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6.2. Numerical examples of the V-notch problems

This section is concerned with the application of the interpolating matrix method (IMMEI) to the evaluation of the sin-

gularity orders of two-dimensional V-notched problems. In the following examples, the integral matrix D with quadratic

interpolation and uniform division is used in the routine IMMEI.

Example 2. A V-notch of isotropic material as shown in Fig. 2.

The study of the single isotropic V-notch is for the purpose of comparison. Using the sub-region accelerated Müller meth-

od, Fu and Long [12] computed a number of eigenvalues of the stress singularity orders of the V-notch problem. Here the

routine IMMEI (ab. IMM) is performed to solve the ODEs, (11), (10) and (9) where m = 0.3 and the opening angle a varies from

0� to 170�. In fact, the computed eigenvalues for the V-notch of a homogeneous isotropic material are independent to

Poisson’s ratio, while the displacement eigenfunctions and m are related. For each given a, interval [h1,h2] are divided into

three uniform meshes with n = 20, 40 and 80, respectively, where the interval implies a circle arc from h1 to h2 with a radius

q at the V-notch tip. The newly computed results are given in Tables 2 and 3, where n is the number of the divisions within

interval [h1,h2]. The eigenvalues k are usually complex and are expressed by kk = nk + igk where i ¼
ffiffiffiffiffiffiffi

�1
p

. Obviously, if the

imaginary part gk is equal to zero, kk is real. One of the useful features of IMMEI is that all the small eigenvalues beyond

nk P �1 and their eigenvectors are determined simultaneously. Notice that kk = �1 is always a four-time repeated eigenvalue

for all of the two-dimensional V-notch problems. There are two different eigenvectors associated with kk = �1. When the two

eigenpairs associated with kk = �1 are introduced into Eq. (3), it can be found that the corresponding terms in Eq. (3) rep-

resent two components of the rigid translation of the structures. Thus, this special eigenvalue is not included in Tables 2

and 3. In addition, another component of the rigid translation is referred to the term of kk = 0 in Eq. (3). Table 2 lists the

eigenvalues related to the symmetrical displacement (mode I) eigenfunction ~uqðhÞ and Table 3 lists those related to the

anti-symmetrical displacement (mode II) eigenfunction ~uqðhÞ. In the case a = 60�, the results of Ref. [26] were obtained using

the special FEM by means of three leading terms of the analytical constrains of the stress field, where the half of the notch

structure, due to symmetry conditions, was discretized with 152 six-node triangular elements.

Table 2

The eigenvalues corresponding to the symmetrical displacement eigenfunction ~uqðhÞ

a Methods n1 g1 n2 g2 n3 g3 n4 g4

170� Ref. [12] �0.099956 0 1.001795 0 1.695232 0 3.022680 0

IMM, n = 20 �0.0997671 0 1.000629 0 1.706359 0 2.972986 0

IMM, n = 40 �0.099949 0 1.001733 0 1.695693 0 3.020562 0

IMM, n = 80 �0.099955 0 1.001789 0 1.695286 0 3.022390 0

150� Ref. [12] �0.248025 0 1.106286 0.096100 2.828294 0.347177 4.547288 0.459268

IMM, n = 20 �0.247871 0 1.109776 0.087307 2.859206 0.321400 4.705928 0.308320

IMM, n = 40 �0.248019 0 1.106531 0.095588 2.830449 0.345590 4.556639 0.452879

IMM, n = 80 �0.248025 0 1.106303 0.0960594 2.828434 0.347070 4.547904 0.458893

120� Ref. [12] �0.384269 0 0.833549 0.252251 2.343717 0.414037 3.849458 0.506015

IMM, n = 20 �0.384138 0 0.836062 0.252153 2.365450 0.414282 3.957761 0.498516

IMM, n = 40 �0.384259 0 0.833734 0.252249 2.345190 0.414126 3.856164 0.506382

IMM, n = 80 �0.384268 0 0.833561 0.252251 2.343817 0.414042 3.849910 0.506043

90� Ref. [12] �0.455516 0 0.629257 0.231251 1.971844 0.373931 3.310377 0.455494

IMM, n = 20 �0.455395 0 0.631172 0.232519 1.988336 0.383516 3.394304 0.488602

IMM, n = 40 �0.455511 0 0.629323 0.231332 1.972392 0.374414 3.313047 0.457263

IMM, n = 80 �0.455516 0 0.629267 0.231257 1.971920 0.373979 3.310732 0.455687

60� Ref. [12] �0.487779 0 0.471028 0.141853 1.677615 0.284901 2.881487 0.360496

Ref. [26] �0.4878 0 0.4710 0.1418 1.6776 0.2849

IMM, n = 20 �0.487717 0 0.471813 0.143640 1.684805 0.296623 2.924016 0.408020

IMM, n = 40 �0.487775 0 0.471073 0.141991 1.678017 0.285650 2.883292 0.363632

IMM, n = 80 �0.487778 0 0.471035 0.141869 1.677673 0.284994 2.881766 0.360853

30� Ref. [12] �0.498547 0 0.202957 0 0.490378 0 1.440492 0.114207

IMM, n = 20 �0.498472 0 0.205806 0 0.488633 0 1.445210 0.147248

IMM, n = 40 �0.498540 0 0.205806 0 0.490268 0 1.440740 0.116222

IMM, n = 80 �0.498546 0 0.202983 0 0.490363 0 1.440530 0.114502

10� Ref. [12] �0.499947 0 0.058843 0 0.499728 0 1.118823 0

IMM, n = 20 �0.499856 0 0.060933 0 0.498345 0 1.151176 0

IMM, n = 40 �0.499934 0 0.059126 0 0.499521 0 1.122380 0

IMM, n = 80 �0.499946 0 0.058862 0 0.499716 0 1.119061 0

0� Exact solutions �0.50000 0 0 0 0.50000 0 1.00000 0

IMM, n = 20 �.499794 0 0.003578 0 0.497325 0 1.043821 0

IMM, n = 40 �.499985 0 0.000257 0 0.499804 0 1.002930 0

IMM, n = 80 �.499999 0 0.000017 0 0.499987 0 1.000197 0
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Tables 2 and 3 show that the eigenvalues obtained using the present method approach the results of Ref. [12] as n in-

creases. In the tables, the two eigenvalues in the range of �1 < kk < 0 for n = 40 have converged up to the fourth significant

figure. It is found that there exists either one or two real eigenvalues when 0 6 a < 180� for the V-notch of isotropic material.

In this study, the eigenvalues whose real parts are between �1 and 0, i.e. Re(k) 2 (�1,0), are the important parameters that

are directly related to the singularity order of the stress field at the V-notch tip. In addition, some eigenvalues when

Re(k)P 0 should be also considered if the near tip stress field is determined.

The highest order of singularity is �0.5 for both mode I and mode II occurring at a = 0, i.e. for a line crack. For the crack

problem, all the exact eigenvalues can be predicted to be real and take �1 + 0.5k, k = 0,1,2, . . . It is well known in the finite

element analysis that the ‘‘quarter-point” element [31,32] at crack tip can efficiently model the singular stress field near the

crack tip, in which the mid-side nodes near the crack tip are placed at the quarter point. In fact, the element at crack tip

assumes the following stress mode:

rij ¼
aij
ffiffiffi
q

p þ bij þ cij
ffiffiffi
q

p
; ð52Þ

which coincides with the stress field related to the first three eigenvalues �0.5, 0 and 0.5. However, it can be seen in Tables 2

and 3 that shape function Eq. (52) of the quarter-point element is no longer available to modeling the stress field near the V-

notch tips of the cases a > 10�, at least, because the singularity orders here are not �0.5 and 0.5.

Example 3. A V-notch of bonded dissimilar bimaterial as shown in Fig. 3.

The V-notch consists of two different isotropic materials and is a plane strain problem. The bonded interface lies at h = h2.

The opining angle is (h3 � h1). Poisson’s ratios of the materials are m1 = 0.167 and m2 = 0.210, respectively. In the parametric

study, E2/E1 is variable. Refs. [13,5] used Newton’s iteration to calculate the stress singularities through an eigenequation

derived by using complex functions. The two intervals [h1,h2] and [h2,h3] are divided into the same number of subintervals

with equal segment in each interval. In the tables, n is the number of the divisions within each interval and kk = nk + igk is the

same meaning to Example 2. Due to the lack of exact solutions for comparisons, very fine divisions are adopted for the

V-notch with E2/E1 = 0.5, h1 = 0�, h2 = 90� and h3 = 270�. The results using IMMEI with finer mesh of n = 160 are acted as

Table 3

The eigenvalues corresponding to the anti-symmetrical displacement eigenfunction ~uqðhÞ

a Methods n1 g1 n2 g2 n3 g3 n4 g4 n5 g5

170� Ref. [12] 0.798933 0 0 0 2.007826 0 2.586721 0 4.060480 0

IMM, n = 20 0.800916 0 0 0 1.997193 0 2.631530 0 3.902388 0

IMM, n = 40 0.799004 0 0 0 2.007389 0 2.588412 0 4.048878 0

IMM, n = 80 0.798942 0 0 0 2.007772 0 2.586934 0 4.058970 0

150� Ref. [12] 0.485814 0 0 0 1.967836 0.261186 3.688038 0.409575 5.406179 0.500793

IMM, n = 20 0.487279 0 0 0 1.979418 0.249763 3.760510 0.349527 5.467941 0

IMM, n = 40 0.485919 0 0 0 1.968624 0.260421 3.692685 0.406489 5.422865 0.490318

IMM, n = 80 0.485819 0 0 0 1.967891 0.261135 3.688348 0.409368 5.407307 0.500164

120� Ref. [12] 0.148913 0 0 0 1.589479 0.348375 3.090928 0.464641 4.601514 0.541087

IMM, n = 20 0.150009 0 0 0 1.597549 0.348528 3.147310 0.463943 4.820487 0.503578

IMM, n = 40 0.148992 0 0 0 1.590100 0.348397 3.100330 0.464789 4.614583 0.541504

IMM, n = 80 0.148918 0 0 0 1.589517 0.348376 3.097151 0.464653 4.602357 0.541143

90� Ref. [12] �0.091471 0 0 0 1.301327 0.315838 2.641420 0.418787 3.978902 0.486625

IMM, n = 20 �0.090574 0 0 0 1.307470 0.319829 2.680315 0.437987 4.148389 0.532426

IMM, n = 40 �0.091436 0 0 0 1.301562 0.315956 2.642884 0.419538 3.984719 0.489385

IMM, n = 80 �0.091466 0 0 0 1.301356 0.315856 2.641593 0.418888 3.979574 0.486968

60� Ref. [12] �0.269099 0 0 0 1.074826 0.229426 2.279767 0.326690 3.482900 0.388984

Ref. [26] �0.2691 0 0 0 1.0749 0.2294

IMM, n = 20 �0.268710 0 0 0 1.077382 0.234207 2.297998 0.351998 3.574251 0.469510

IMM, n = 40 �0.269070 0 0 0 1.075014 0.229741 2.280884 0.328306 3.487289 0.394444

IMM, n = 80 �0.269095 0 0 0 1.074848 0.229466 2.279900 0.326881 3.483436 0.389603

30� Ref. [12] �0.401808 0 0 0 0.838934 0 0.948560 0 1.987005 0.166741

IMM, n = 20 �0.401460 0 0 0 0.881197 0 0.909578 0 1.999550 0.222443

IMM, n = 40 �0.401781 0 0 0 0.840591 0 0.947180 0 1.987897 0.170364

IMM, n = 80 �0.401805 0 0 0 0.839163 0 0.948357 0 1.987095 0.167222

10� Ref. [12] �0.470645 0 0 0 0.588609 0 0.999107 0 1.649700 0

IMM, n = 20 �0.470319 0 0 0 0.597760 0 0.991337 0 1.770116 0

IMM, n = 40 �0.470599 0 0 0 0.589736 0 0.998226 0 1.659348 0

IMM, n = 80 �0.470642 0 0 0 0.588685 0 0.999045 0 1.650330 0

0� Exact solutions �0.50000 0 0 0 0.500000 0 1.000000 0 1.50000 0

IMM, n = 20 �0.499373 0 0 0 0.513993 0 0.987129 0 1.62522 0

IMM, n = 40 �0.499954 0 0 0 0.500983 0 0.999039 0 1.50741 0

IMM, n = 80 �0.499997 0 0 0 0.500066 0 0.999935 0 1.50049 0
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the standard solution shown in Table 4. It is seen in Table 4 that the first six eigenvalues yielded by taking n = 80 and n = 160

agree with each other up to the sixth significant figure. Thus, the computed results using IMMEI in Table 5 are obtained by

taking up to n = 80 only. In general cases of the bimaterial V-notch of isotropic material, there exist two real eigenvalues in

the range of �1 < kk < 0. It can be seen in Tables 4 and 5 that the IMMEI solutions converge and agree well with the alter-

native numerical results. Thus, in Tables 4 and 5, the solutions of IMMEI are always given to show convergence rate of

the algorithm with respect to the division refinement and comparisons with the results from Refs. [13,5]. In general, Tables

4 and 5 show that IMMEI can provide very accurate results. For instance, apart from the very small imaginary components,

all the results in Table 5 obtained using IMMEI with n = 40 are converged up to the fifth significant figure. Furthermore all the

associated eigenvectors are computed with the same degree of accuracy.

Example 4. A plane V-notch of orthotropic material as shown in Fig. 10.

The V-notch of orthotropic material is a plane stress problem. The opining angle is a. Two principal axes of the material

are along q-direction and h-direction related to the polar coordinate system, respectively. Ehh,Eqq are the hoop and radial elas-

tic moduli, respectively, lqh the Poisson’s ratio, Gqh the shear modulus. Let Ehh/Eqq = 0.0375, Gqh/Eqq = 0.1, lqh = 0.187.

Evidently, the stress singularity orders and the stress fields near the notch roots vary as the change of a. Delale et al. [33]

given an analytic solution for the stress singularity orders. Pageau et al. [6] used the finite element method to achieve the

numerical results for it. Here IMMEI is employed to solve the ODEs Eqs. (31) and (32) in order to determine the stress sin-

gularity orders for several different opening angles. The computed results of k1 are shown in Tables 6 and 7, where n is the

number of the divisions. Notice that even if a > 180�, there exist the stress singularity orders within ki 2 (�1,0) for the

orthotropic material. In fact, the number of the stress singularity orders within ki 2 (�1,0) increases as the decrease of

the opening angle a. When a = 0, the number of ki within (�1,0) is maximum, where there are five stress singularity orders

for the above values of the material parameters. And the first five stress singularity orders, ki, are all real roots in the case as

Table 4

The eigenvalues of the V-notch with h1 = 0�, h2 = 90�, h3 = 270�, E1/E2 = 2

Methods n1 g1 n2 g2 n4 g4 n5 g5 n6 g6

Ref. [5] �0.488 0

Ref. [13] �0.48756 0 �0.16731 0

IMM, n = 10 �0.4873683 0 �0.1663428 0 0.5784164 0.1962388 1.4616128 0.2663404 1.8648616 0.6727592

IMM, n = 20 �0.4875405 0 �0.1672198 0 0.5752737 0.1949118 1.4440259 0.2566424 1.8589506 0.6695227

IMM, n = 40 �0.4875569 0 �0.1673009 0 0.5750053 0.1948013 1.4426988 0.2558552 1.8585303 0.6692342

IMM, n = 80 �0.4875581 0 �0.1673069 0 0.5749855 0.1947932 1.4426019 0.2557975 1.8584998 0.6692129

IMM, n = 160 �0.4875582 0 �0.1673073 0 0.5749842 0.1947926 1.4425954 0.2557936 1.8584977 0.6692115

Note: n3 = 0, g3 = 0 for all of the above models.

Table 5

The eigenvalues of the V-notch with h1 = 0�, h2 = 90�, h3 = 270�

E2/E1 Ref. [5] Ref. [13] IMMEI

n = 20 n = 40 n = 80

k1 k1 k2 k1 k2 k1 k2 k1 k2

0.33 �0.498 �0.49805 �0.22194 �0.4980360 �0.2218669 �0.4980532 �0.2219326 �0.4980545 �0.2219375

0.5 �0.488 �0.48756 �0.16731 �0.4875405 �0.1672198 �0.4875569 �0.1673009 �0.4875581 �0.1673069

1.0 �0.450 �0.45074 �0.09252 �0.4507273 �0.0923977 �0.4507428 �0.0925077 �0.4507440 �0.0925159

2.14 �0.390 �0.39034 �0.04170 �0.3903270 �0.0415509 �0.3903419 �0.0416890 �0.3903430 �0.0416992

4.0 �0.337 �0.33611 �0.01944 �0.3360963 �0.0192742 �0.3361104 �0.0194300 �0.3361115 �0.0194415

10.0 �0.270 �0.26966 �0.00529 �0.2696441 �0.0051051 �0.2696558 �0.0052800 �0.2696567 �0.0052930

θθE
ρρE

O

α

θ

Fig. 10. The V-notch of orthotropic material.
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shown in Table 7. In Table 6, it is seen that the computed k1 using IMMEI with n = 80 are converged up to the sixth significant

figure in contrast to the results of IMMEI with n = 160 and Refs. [33,6]. In addition, all the associated eigenvectors are

achieved with the same degree of accuracy. As a result, the angular distribution functions ~uqðhÞ, ~uhðhÞ, ~rqqðhÞ, ~rhhðhÞ and

~rqhðhÞ associated with k1 when a = 180� and taking n = 80 are plotted in Figs. 11 and 12, respectively. It is seen in Fig. 12 that

the stress angular distribution functions using IMMEI are in good agreement with ones from Ref. [33].

Table 6

k1 of the V-notch of the orthotropic material in several different a

a IMMEI, n = 20 IMMEI, n = 40 IMMEI, n = 80 IMMEI, n = 160 Ref. [6], FEM Ref. [33], Analytic solution

240� �0.2848977 �0.2850110 �0.2850194 �0.2850200 �0.284846 �0.285032

180� �0.6897694 �0.6898106 �0.6898137 �0.6898139 �0.689715 �0.689816

120� �0.8129647 �0.8129932 �0.8129953 �0.8129954 �0.812902 �0.812996

60� �0.8492186 �0.8492432 �0.8492450 �0.8492452 �0.849159 �0.849246

0� �0.8555746 �0.8556059 �0.8556082 �0.8556084 �0.855492 �0.855608

Table 7

The first five ki for the V-notch of the orthotropic material when a = 0�

IMMEI, n = 20 IMMEI, n = 40 IMMEI, n = 80 IMMEI, n = 160 Ref. [6], FEM Ref. [33], Analytic solution

k1 �0.8555746 �0.8556059 �0.8556082 �0.8556084 �0.855607 �0.855608

k2 �0.8348093 �0.8349901 �0.8350034 �0.8350043 �0.834996 �0.835006

k3 �0.6646219 �0.6655667 �0.6656353 �0.6656399 �0.665614 �0.665643

k4 �0.4545949 �0.4581610 �0.4584159 �0.4584331 �0.458360 �0.458441

k5 �0.2141988 �0.2251511 �0.2259155 �0.2259670 �0.225788 �0.225985
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Fig. 11. Displacement eigenvectors of the V-notch when a = 180�, n = 80.
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Fig. 12. Stress eigenvectors of the V-notch when a = 180�, n = 80.
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7. Conclusions

By assuming an asymptotic stress field, the governing differential equations of linear elasticity in the notch tip region

were transformed into a general eigenvalue problem of ordinary differential equations (ODEs), the solution of which pro-

vided the singularity orders at plane V-notch tips. The interpolating matrix method was further developed to solve the gen-

eral eigenvalue problem. One of the unique features of the interpolating matrix method is that the method takes

yk0; y
0
k0; . . . ; y

ðmk�1Þ
k0 ; y

ðmkÞ
k0 ; y

ðmkÞ
k1 ; . . . ; y

ðmkÞ
kn

, (k = 1(1)r), as the fundamental unknowns of the algebraic equation system after dis-

cretization, which include the highest derivatives of all functions appearing in the fundamental equations. According to

the formulations of the interpolating matrix method, the new solver called IMMEI was developed in FORTRAN, which is

adopted to solve the general eigenvalue problem in ODEs. By following the solution procedure, the main singularity orders

of plane V-notches are calculated from solving the eigenvalue problems of the ODEs. In parallel, the associated eigenvectors

of the displacement and stress fields near the V-notches are also determined.

The applications of the present method in terms of determining the stress singularities for general plane V-notch prob-

lems have the following features: (1) The number of wedges can be arbitrary; (2) Each wedge can be any kind of anisotropic

materials; (3) Each wedge angle can be arbitrary; (4) The boundary conditions of the V-notch can be free–free, free–fixed and

fixed–fixed; (5) All of the useful main stress singularity orders and the associated eigenvectors are simultaneously obtained

by implementing the interpolating matrix method to the governing ordinary differential equations (ODEs) of V-notches, be-

cause the ODEs and the derived algebraic eigenequations are linear. One obvious advantage is that the solutions of each

eigenvalue and the associated eigenfunctions as well as their derivatives are simultaneously computed with the same degree

of accuracy. Especially, these accurate eigenvectors and their derivatives near the V-notch tip are needed in the analysis of

the near tip stress field and the notch stress intensity factors.

Numerical examples have been given to show the applications of the present method. Comparisons with the results in the

literatures were made and have shown that the new method is an effective and accurate tool for dealing with singularity

orders of general plane V-notches.
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