218 research outputs found
Hadronic Form Factors: Combining QCD Calculations with Analyticity
I discuss recent applications of QCD light-cone sum rules to various form
factors of pseudoscalar mesons. In this approach both soft and hard
contributions to the form factors are taken into account. Combining QCD
calculation with the analyticity of the form factors, one enlarges the region
of accessible momentum transfers.Comment: 12 pages, 3 figures, Talk at the Workshop "Shifmania, Crossing the
boundaries: Gauge dynamics at strong coupling", May 14-17,2009, Minneapolis,
USA; table entry and reference update
Constraints on B--->pi,K transition form factors from exclusive semileptonic D-meson decays
According to the heavy-quark flavour symmetry, the transition
form factors could be related to the corresponding ones of D-meson decays near
the zero recoil point. With the recent precisely measured exclusive
semileptonic decays and , we perform a
phenomenological study of transition form factors based on this
symmetry. Using BK, BZ and Series Expansion parameterizations of the form
factor slope, we extrapolate transition form factors from
to . It is found that, although being consistent with
each other within error bars, the central values of our results for form factors at , , are much smaller than
predictions of the QCD light-cone sum rules, but are in good agreements with
the ones extracted from hadronic B-meson decays within the SCET framework.
Moreover, smaller form factors are also favored by the QCD factorization
approach for hadronic B-meson decays.Comment: 19 pages, no figure, 5 table
Brief review on semileptonic B decays
We concisely review semileptonic B decays, focussing on recent progress on
both theoretical and experimental sides.Comment: 18 pages, 2 figures; version to be published in Mod. Phys. Lett.
Theoretical and Phenomenological Constraints on Form Factors for Radiative and Semi-Leptonic B-Meson Decays
We study transition form factors for radiative and rare semi-leptonic B-meson
decays into light pseudoscalar or vector mesons, combining theoretical
constraints and phenomenological information from Lattice QCD, light-cone sum
rules, and dispersive bounds. We pay particular attention to form factor
parameterisations which are based on the so-called series expansion, and study
the related systematic uncertainties on a quantitative level. In this context,
we also provide the NLO corrections to the correlation function between two
flavour-changing tensor currents, which enters the unitarity constraints for
the coefficients in the series expansion.Comment: 52 pages; v2: normalization error in (29ff.) corrected, conclusion
about relevance of unitarity bounds modified; form factor fits unaffected;
references added; v3: discussion on truncation of series expansion added,
matches version to be published in JHEP; v4: corrected typos in Tables 5 and
Two-loop Corrections to the B to pi Form Factor from QCD Sum Rules on the Light-Cone and |V(ub)|
We calculate the leading-twist O(alphas^2 beta0) corrections to the B to pi
transition form factor f+(0) in light-cone sum rules. We find that, as
expected, there is a cancellation between the O(alphas^2 beta0) corrections to
fB f+(0) and the large corresponding corrections to fB, calculated in QCD sum
rules. This suggests the insensitivity of the form factors calculated in the
light-cone sum rules approach to this source of radiative corrections. We
further obtain an improved determination of the CKM matrix element |V(ub)|,
using latest results from BaBar and Belle for f+(0)|V(ub)|.Comment: 18 pages, 3 figure
B-physics from Nf=2 tmQCD: the Standard Model and beyond
We present a lattice QCD computation of the b-quark mass, the B and B_s decay constants, the B-mixing bag parameters for the full four-fermion operator basis as well as determinations for \xi and f_{Bq}\sqrt{B_i^{(q)}} extrapolated to the continuum limit and to the physical pion mass. We used N_f = 2 twisted mass Wilson fermions at four values of the lattice spacing with pion masses ranging from 280 to 500 MeV. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out on ratios of physical quantities computed at nearby quark masses, exploiting the fact that they have an exactly known infinite mass limit. Our results are m_b(m_b, \overline{\rm{MS}})=4.29(12) GeV, f_{Bs}=228(8) MeV, f_{B}=189(8) MeV and f_{Bs}/f_B=1.206(24). Moreover with our results for the bag-parameters we find \xi=1.225(31), B_1^{(s)}/B_1^{(d)}=1.01(2), f_{Bd}\sqrt{\hat{B}_{1}^{(d)}} = 216(10) MeV and f_{Bs}\sqrt{\hat{B}_{1}^{(s)}} = 262(10) MeV. We also computed the bag parameters for the complete basis of the four-fermion operators which are required in beyond the SM theories. By using these results for the bag parameters we are able to provide a refined Unitarity Triangle analysis in the presence of New Physics, improving the bounds coming from B_{(s)}-\bar B_{(s)} mixing
Ethical preferences for influencing superiors: A 41-society study
With a 41-society sample of 9990 managers and professionals, we used hierarchical linear modeling to investigate the impact of both macro-level and micro-level predictors on subordinate influence ethics. While we found that both macro-level and micro-level predictors contributed to the model definition, we also found global agreement for a subordinate influence ethics hierarchy. Thus our findings provide evidence that developing a global model of subordinate ethics is possible, and should be based upon multiple criteria and multilevel variables
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
- …
