21 research outputs found

    In vivo measurements of muscle specific tension in adults and children

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Authors.To better understand the effects of pubertal maturation on the contractile properties of skeletal muscle in vivo, the present study investigated whether there are any differences in the specific tension of the quadriceps muscle in 20 adults and 20 prepubertal children of both sexes. Specific tension was calculated as the ratio between the quadriceps tendon force and the sum of the physiological cross-sectional area (PCSA) multiplied by the cosine of the angle of pennation of each head within the quadriceps muscle. The maximal quadriceps tendon force was calculated from the knee extension maximal voluntary contraction (MVC) by accounting for EMG-based estimates of antagonist co-activation, incomplete quadriceps activation using the interpolation twitch technique and magnetic resonance imaging (MRI)-based measurements of the patellar tendon moment arm. The PCSA was calculated as the muscle volume, measured from MRI scans, divided by optimal fascicle length, measured from ultrasound images during MVC at the estimated angle of peak quadriceps muscle force. It was found that the quadriceps tendon force and PCSA of men (11.4 kN, 214 cm2) were significantly greater than those of the women (8.7 kN, 152 cm2; P 0.05) between groups: men, 55 ± 11 N cm−2; women, 57.3 ± 13 N cm−2; boys, 54 ± 14 N cm−2; and girls, 59.8 ± 15 N cm−2. These findings indicate that the increased muscle strength with maturation is not due to an increase in the specific tension of muscle; instead, it can be attributed to increases in muscle size, moment arm length and voluntary activation level

    Polymorphisms in PTK2 are associated with skeletal muscle specific force: an independent replication study

    Get PDF
    Purpose The aim of the study was to investigate two single nucleotide polymorphisms (SNP) in PTK2 for associations with human muscle strength phenotypes in healthy men. Methods Measurement of maximal isometric voluntary knee extension (MVCKE) torque, net MVCKE torque and vastus lateralis (VL) specific force, using established techniques, was completed on 120 Caucasian men (age = 20.6 ± 2.3 year; height = 1.79 ± 0.06 m; mass = 75.0 ± 10.0 kg; mean ± SD). All participants provided either a blood (n = 96) or buccal cell sample, from which DNA was isolated and genotyped for the PTK2 rs7843014 A/C and rs7460 A/T SNPs using real-time polymerase chain reaction. Results Genotype frequencies for both SNPs were in Hardy–Weinberg equilibrium (X 2 ≤ 1.661, P ≥ 0.436). VL specific force was 8.3% higher in rs7843014 AA homozygotes than C-allele carriers (P = 0.017) and 5.4% higher in rs7460 AA homozygotes than T-allele carriers (P = 0.029). No associations between either SNP and net MVCKE torque (P ≥ 0.094) or peak MVCKE torque (P ≥ 0.107) were observed. Conclusions These findings identify a genetic contribution to the inter-individual variability within muscle specific force and provides the first independent replication, in a larger Caucasian cohort, of an association between these PTK2 SNPs and muscle specific force, thus extending our understanding of the influence of genetic variation on the intrinsic strength of muscle.Published versio

    Variants within the MMP3 gene and patellar tendon properties in vivo in an asymptomatic population

    Get PDF
    Background/aim Gene variants encoding for proteins involved in homeostatic processes within tendons may influence its material and mechanical properties in humans. The purpose of this study was to examine the association between three polymorphisms of the MMP3 gene, (rs679620, rs591058 and rs650108) and patellar tendon dimensional and mechanical properties in vivo. Methods One hundred and sixty, healthy, recreationally-active, Caucasian men and women, aged 18–39 were recruited. MMP3 genotype determined using real-time PCR was used to select 84 participants showing greatest genetic differences to complete phenotype measurements. Patellar tendon dimensions (volume) and functional (elastic modulus) properties were assessed in vivo using geometric modelling, isokinetic dynamometry, electromyography and ultrasonography. Results No significant associations were evident between the completely linked MMP3 rs591058 and rs679620 gene variants, and closely linked rs650108 gene variant, and either patellar tendon volume (rs679620, P = 0.845; rs650108, P = 0.984) or elastic modulus (rs679620, P = 0.226; rs650108, P = 0.088). Similarly, there were no associations with the Z-score that combined those dimension and functional properties into a composite value (rs679620, P = 0.654; rs650108, P = 0.390). Similarly, no association was evident when comparing individuals with/without the rarer alleles (P > 0.01 in all cases). Conclusions Patellar tendon properties do not seem to be influenced by the MMP3 gene variants measured. Although these MMP3 gene variants have previously been associated with the risk of tendon pathology, that association is unlikely to be mediated via underlying tendon dimensional and functional properties

    Musculoskeletal modeling of the suboccipital spine: kinematics analysis, muscle lengths, and muscle moment arms during axial rotation and flexion extension.

    No full text
    In vitro and modeling study of upper cervical spine (UCS) three-dimensional (3D) kinematics and muscle moment arm (MA) during axial rotation (AR) and flexion extension (FE).Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore