1,249 research outputs found
On the existence of impurity bound excitons in one-dimensional systems with zero range interactions
We consider a three-body one-dimensional Schr\"odinger operator with zero
range potentials, which models a positive impurity with charge
interacting with an exciton. We study the existence of discrete eigenvalues as
is varied. On one hand, we show that for sufficiently small
there exists a unique bound state whose binding energy behaves like ,
and we explicitly compute its leading coefficient. On the other hand, if
is larger than some critical value then the system has no bound
states
Halite as a Methane Sequestration Host: A Possible Explanation for Periodic Methane Release on Mars, and a Surface-accessible Source of Ancient Martian Carbon
We present the hypothesis that halite may play a role in methane sequestration on the martian surface. In terrestrial examples, halite deposits sequester large volumes of methane and chloromethane. Also, examples of chloromethane-bearing, approximately 4.5 Ga old halite from the Monahans meteorite show that this system is very stable unless the halite is damaged. On Mars, methane may be generated from carbonaceous material trapped in ancient halite deposits and sequestered. The methane may be released by damaging its halite host; either by aqueous alteration, aeolian abrasion, heating, or impact shock. Such a scenario may help to explain the appearance of short-lived releases of methane on the martian surface. The methane may be of either biogenic or abiogenic origin. If this scenario plays a significant role on Mars, then martian halite deposits may contain samples of organic compounds dating to the ancient desiccation of the planet, accessible at the surface for future sample return missions
Nonlinear Schroedinger equation with two symmetric point interactions in one dimension
We consider a time-dependent one-dimensional nonlinear Schroedinger equation
with a symmetric potential double well represented by two delta interactions.
Among our results we give an explicit formula for the integral kernel of the
unitary semigroup associated with the linear part of the Hamiltonian. Then we
establish the corresponding Strichartz-type estimate and we prove local
existence and uniqueness of the solution to the original nonlinear problem
On the lowest eigenvalue of Laplace operators with mixed boundary conditions
In this paper we consider a Robin-type Laplace operator on bounded domains.
We study the dependence of its lowest eigenvalue on the boundary conditions and
its asymptotic behavior in shrinking and expanding domains. For convex domains
we establish two-sided estimates on the lowest eigenvalues in terms of the
inradius and of the boundary conditions
Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero curvature representation
In this paper we classify Weingarten surfaces integrable in the sense of
soliton theory. The criterion is that the associated Gauss equation possesses
an sl(2)-valued zero curvature representation with a nonremovable parameter.
Under certain restrictions on the jet order, the answer is given by a third
order ordinary differential equation to govern the functional dependence of the
principal curvatures. Employing the scaling and translation (offsetting)
symmetry, we give a general solution of the governing equation in terms of
elliptic integrals. We show that the instances when the elliptic integrals
degenerate to elementary functions were known to nineteenth century geometers.
Finally, we characterize the associated normal congruences
Resonances Width in Crossed Electric and Magnetic Fields
We study the spectral properties of a charged particle confined to a
two-dimensional plane and submitted to homogeneous magnetic and electric fields
and an impurity potential. We use the method of complex translations to prove
that the life-times of resonances induced by the presence of electric field are
at least Gaussian long as the electric field tends to zero.Comment: 3 figure
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. II: The Second Year (2009-2010)
As an extension of the project in Kato et al. (2009, arXiv:0905.1757), we
collected times of superhump maxima for 61 SU UMa-type dwarf novae mainly
observed during the 2009-2010 season. The newly obtained data confirmed the
basic findings reported in Kato et al. (2009): the presence of stages A-C, as
well as the predominance of positive period derivatives during stage B in
systems with superhump periods shorter than 0.07 d. There was a systematic
difference in period derivatives for systems with superhump periods longer than
0.075 d between this study and Kato et al. (2009). We suggest that this
difference is possibly caused by the relative lack of frequently outbursting SU
UMa-type dwarf novae in this period regime in the present study. We recorded a
strong beat phenomenon during the 2009 superoutburst of IY UMa. The close
correlation between the beat period and superhump period suggests that the
changing angular velocity of the apsidal motion of the elliptical disk is
responsible for the variation of superhump periods. We also described three new
WZ Sge-type objects with established early superhumps and one with likely early
superhumps. We also suggest that two systems, VX For and EL UMa, are WZ
Sge-type dwarf novae with multiple rebrightenings. The O-C variation in OT
J213806.6+261957 suggests that the frequent absence of rebrightenings in very
short-Porb objects can be a result of sustained superoutburst plateau at the
epoch when usual SU UMa-type dwarf novae return to quiescence preceding a
rebrightening. We also present a formulation for a variety of Bayesian
extension to traditional period analyses.Comment: 63 pages, 77 figures, 1 appendix, Accepted for publication in PASJ,
data correctio
Measurement of the W boson mass
We present a measurement of the W boson mass in W -> ev decays using 1 fb^-1
of data collected with the D0 detector during Run II of the Fermilab Tevatron
collider. With a sample of 499830 W -> ev candidate events, we measure M_W =
80.401 +- 0.043 GeV. This is the most precise measurement from a single
experiment.Comment: As published in PR
Search for a Narrow ttbar Resonance in ppbar Collisions at sqrt{s}=1.96 TeV
We report a search for a narrow ttbar resonance that decays into a
lepton+jets final state based on an integrated luminosity of 5.3/fb of
proton-antiproton collisions at sqrt{s}=1.96 TeV collected by the D0
Collaboration at the Fermilab Tevatron Collider. We set upper limits on the
production cross section of such a resonance multiplied by its branching
fraction to ttbar which we compare to predictions for a leptophobic topcolor Z'
boson. We exclude such a resonance at the 95% confidence level for masses below
835 GeV.Comment: 7 pages, 3 figures, submitted to Physical Review Letter
Measurement of the electron charge asymmetry in ppbar->W+X->enu+X events at sqrt{s}=1.96 TeV
We present a measurement of the electron charge asymmetry in
ppbar->W+X->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb-1
of data collected with the D0 detector at the Fermilab Tevatron Collider. The
asymmetry is measured as a function of the electron transverse momentum and
pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations
from next-to-leading order calculations in perturbative quantum chromodynamics.
These measurements will allow more accurate determinations of the proton parton
distribution functions.Comment: 7 pages, 3 figures, Fermilab-Pub-08/249-E, submitted to Phys. Rev.
Let
- …
