1,412 research outputs found
Recommended from our members
A continuously updated, geospatially rectified database of utility-scale wind turbines in the United States.
Over 60,000 utility-scale wind turbines are installed in the United States as of October, 2019, representing over 97 gigawatts of electric power capacity; US wind turbine installations continue to grow at a rapid pace. Yet, until April 2018, no publicly-available, regularly updated data source existed to describe those turbines and their locations. Under a cooperative research and development agreement, analysts from three organizations collaborated to develop and release the United States Wind Turbine Database (USWTDB) - a publicly available, continuously updated, spatially rectified data source of locations and attributes of utility-scale wind turbines in the United States. Technical specifications and wind facility data, incorporated from five sources, undergo rigorous quality control. The location of each turbine is visually verified using high-resolution aerial imagery. The quarterly-updated data are available in a variety of formats, including an interactive web application, comma-separated values (CSV), shapefile, and application programming interface (API). The data are used widely by academic researchers, engineers and developers from wind energy companies, government agencies, planners, educators, and the general public
Recognizing local agro-ecological knowledge in sustainable intensification of tree-crop-livestock farming systems
Communication issues in requirements elicitation: A content analysis of stakeholder experiences
The gathering of stakeholder requirements comprises an early, but continuous and highly critical stage in system development. This phase in development is subject to a large degree of error, influenced by key factors rooted in communication problems. This pilot study builds upon an existing theory-based categorisation of these problems through presentation of a four-dimensional framework on communication. Its structure is validated through a content analysis of interview data, from which themes emerge, that can be assigned to the dimensional categories, highlighting any problematic areas. The paper concludes with a discussion on the utilisation of the framework for requirements elicitation exercises
Emergent complex neural dynamics
A large repertoire of spatiotemporal activity patterns in the brain is the
basis for adaptive behaviour. Understanding the mechanism by which the brain's
hundred billion neurons and hundred trillion synapses manage to produce such a
range of cortical configurations in a flexible manner remains a fundamental
problem in neuroscience. One plausible solution is the involvement of universal
mechanisms of emergent complex phenomena evident in dynamical systems poised
near a critical point of a second-order phase transition. We review recent
theoretical and empirical results supporting the notion that the brain is
naturally poised near criticality, as well as its implications for better
understanding of the brain
Does owning a pet protect older people against loneliness?
This article has been made available through the Brunel Open Access Publishing Fund.Pet ownership is thought to make a positive contribution to health, health behaviours and the general well-being of older people. More specifically pet ownership is often proposed as a solution to the problem of loneliness in later life and specific 'pet based' interventions have been developed to combat loneliness. However the evidence to support this relationship is slim and it is assumed that pet ownership is a protection against loneliness rather than a response to loneliness. The aim of this paper is to examine the association between pet ownership and loneliness by exploring if pet ownership is a response to, or protection against, loneliness using Waves 0-5 from the English Longitudinal Study of Ageing (ELSA)
Spectroscopic and Mechanistic Studies of Heterodimetallic Forms of Metallo-β-lactamase NDM-1
In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV–vis, 1H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data
Sensory determinants of behavioral dynamics in Drosophila thermotaxis
Complex animal behaviors are built from dynamical relationships between sensory inputs, neuronal activity, and motor outputs in patterns with strategic value. Connecting these patterns illuminates how nervous systems compute behavior. Here, we study Drosophila larva navigation up temperature gradients toward preferred temperatures (positive thermotaxis). By tracking the movements of animals responding to fixed spatial temperature gradients or random temperature fluctuations, we calculate the sensitivity and dynamics of the conversion of thermosensory inputs into motor responses. We discover three thermosensory neurons in each dorsal organ ganglion (DOG) that are required for positive thermotaxis. Random optogenetic stimulation of the DOG thermosensory neurons evokes behavioral patterns that mimic the response to temperature variations. In vivo calcium and voltage imaging reveals that the DOG thermosensory neurons exhibit activity patterns with sensitivity and dynamics matched to the behavioral response. Temporal processing of temperature variations carried out by the DOG thermosensory neurons emerges in distinct motor responses during thermotaxis
Auditory network connectivity in tinnitus patients: a resting-state fMRI study
Objective: Resting-state functional magnetic resonance imaging (fMRI) uncovers correlated activity between spatially distinct functionally related brain regions and offers clues about the integrity of functional brain circuits in people with chronic subjective tinnitus. We chose to investigate auditory network connectivity, adopting and extending previously used analyses methods to provide an independent evaluation of replicability. Design: Independent components analysis (ICA) was used to identify coherent patterns arising from spontaneous brain signals within the resting-state data. The auditory network component was extracted and evaluated. Bivariate and partial correlation analyses were performed on pre-defined regions of bilateral auditory cortex to assess functional connectivity. Study sample: Our design carefully matched participant groups for possible confounds, such as hearing status. Twelve patients (seven male, five female; mean age 66 years) all with chronic constant tinnitus and eleven controls (eight male, three female; mean age 68 years) took part. Results: No significant differences were found in auditory network connectivity between groups after correcting for multiple statistical comparisons in the analysis. This contradicts previous findings reporting reduced auditory network connectivity; albeit at a less stringent statistical threshold. Conclusions: Auditory network connectivity does not appear to be reliably altered by the experience of chronic subjective tinnitus
- …
