68 research outputs found

    Metal mobility during hydrothermal breakdown of Fe-Ti oxides : insights from Sb-Au mineralizing event (Variscan Armorican Massif, France)

    Get PDF
    Hydrothermal alteration related to Sb-Au mineralization is widespread in the Variscan Armorican Massif, but mineral replacement reactions are not well characterized, in particular the hydrothermal breakdown of ilmenite-titanohematite. Based on petrography, electron probe micro-analyzer and laser ablation-inductively coupled plasma-mass spectrometer analyses, we document mineralogical change at rock- and mineral-scale and the redistribution of Sb and others trace elements during the recrystallization of ilmenite-titanohematite to hydrothermal rutile. Hydrothermal alteration is mainly potassic with associated carbonation. The replacement mechanism is interpreted to be an interface-coupled dissolution-reprecipitation process. Results show that Mn, Zn, Co, Ni, Sn, Mo and U are released during hydrothermal alteration, whereas Sb and W are incorporated in newly-formed hydrothermal rutile from the hydrothermal fluid. Furthermore, the concentration of Sb evolves through time suggesting a change in fluid composition likely related to an enrichment of fluid in Sb during rutile crystallization. Considering that Fe-Ti oxides breakdown during hydrothermal alteration is common within epithermal and mesothermal/orogenic Au-Sb mineralizing systems, results report in this study yield important constraints about metal mobility and exchanges in hydrothermal gold systems

    Granitoides asociados a zonas de desgarre: modelos analógicos y aplicación al macizo de Lizio (zona de cizalla surarmoricana)

    Get PDF
    Granite intrusion in the upper crust along a crustal-scale shear zone has been modeled by injecting a Newtonian fluid (low-viscosity silicone putty) into a sandpack containing a ductile layer of silicone putty which acted as a potential décollement level along which the injected material could spread. The strike-slip regime was obtained using a mobile rigid basal plate sliding horizontally. Boundary conditions were chosen in order to analyze the influence of different rheologic profiles of the upper crust on the pattern of the intrusion. Experiments showed that: 1) intrusions are elongate and their long axis tends to track the principal stretching direction associated with the strike-slip regime, 2) intrusions are asymmetric shaped in horizontal view, with the development of a sheared tail trailing behind the intrusion, 3) the strike slip environment allowed local rising of the injected fluid along faults formed in the overburden, 4) when the crustal rheologic profile is similar in both sides of the shear zone, intrusions are asymmetric drop shaped, 5) when the viscosity of materials above the feeding pipe is higher that viscosity of materials of the other side of the shear zone, the asymmetric drop shape not appears. Lizio leucogranite of the South Armorican Shear Zone (South Brittany, France) emphasize that our experiments can explain the geometry of many syntectonic' granites emplaced along strike-slip zones. They further shed some light on mechanisms of pluton intrusion in the upper crust.El emplazamiento de granitoides en zonas de desgarre de la corteza superior se ha modelizado inyectando un fluido newtoniano en un paquete de arena en el cual se intercala una capa dúctil de silicona que actúa como un nivel de despegue potencial en el cual el material inyectado puede expandirse. El régimen de desgarre se obtiene utilizando una placa basal rígida y móvil que desliza horizontalmente. Se ha analizado la influencia de diferentes perfiles reológicos de la corteza superior en la forma de la intrusión. Los experimentos muestran que: 1) las intrusiones son alargadas y su eje mayor toma la dirección principal de elongación asociada al régimen de desgarre, 2) las intrusiones presentan forma asimétrica en planta, con el desarrollo de una cola en el sentido de cizalla, 3) el régimen de desgarre permite localmente la subida del fluido inyectado a lo largo de las fallas formadas en la cobertera, 4) cuando el perfil reológico de la corteza es igual a ambos lados de la zona de cizalla, las intrusiones presentan forma de gota asimétrica, 5) cuando la viscosidad de los materiales que están por encima del canal de alimentación es superior a la de los materiales del otro lado del accidente principal, no aparece la forma en gota asimétrica. El leucogranito de Lizio en la zona de cizalla surarmoricana (Sur de Bretaña, Francia) es un ejemplo de que la modelización analógica puede dar las claves para explicar la geometría de muchos granitos sintectónicos emplazados en zonas de desgarre

    Granular shear flow in varying gravitational environments

    Get PDF
    Despite their very low surface gravities, asteroids exhibit a number of different geological processes involving granular matter. Understanding the response of this granular material subject to external forces in microgravity conditions is vital to the design of a successful asteroid sub-surface sampling mechanism, and in the interpretation of the fascinating geology on an asteroid. We have designed and flown a Taylor–Couette shear cell to investigate granular flow due to rotational shear forces under the conditions of parabolic flight microgravity. The experiments occur under weak compression. First, we present the technical details of the experimental design with particular emphasis on how the equipment has been specifically designed for the parabolic flight environment. Then, we investigate how a steady state granular flow induced by rotational shear forces differs in varying gravitational environments. We find that the effect of constant shearing on the granular material, in a direction perpendicular to the effective acceleration, does not seem to be strongly influenced by gravity. This means that shear bands can form in the presence of a weak gravitational field just as on Earth

    Kinematics of the Southern Rhodope Core Complex (North Greece)

    Get PDF
    The Southern Rhodope Core Complex is a wide metamorphic dome exhumed in the northern Aegean as a result of large-scale extension from mid-Eocene to mid-Miocene times. Its roughly triangular shape is bordered on the SW by the Jurassic and Cretaceous metamorphic units of the Serbo-Macedonian in the Chalkidiki peninsula and on the N by the eclogite bearing gneisses of the Sideroneron massif. The main foliation of metamorphic rocks is flat lying up to 100 km core complex width. Most rocks display a stretching lineation trending NEâ SW. The Kerdylion detachment zone located at the SW controlled the exhumation of the core complex from middle Eocene to mid-Oligocene. From late Oligocene to mid-Miocene exhumation is located inside the dome and is accompanied by the emplacement of the synkinematic plutons of Vrondou and Symvolon. Since late Miocene times, extensional basin sediments are deposited on top of the exhumed metamorphic and plutonic rocks and controlled by steep normal faults and flat-ramp-type structures. Evidence from Thassos Island is used to illustrate the sequence of deformation from stacking by thrusting of the metamorphic pile to ductile extension and finally to development of extensional Plio-Pleistocene sedimentary basin. Paleomagnetic data indicate that the core complex exhumation is controlled by a 30� dextral rotation of the Chalkidiki block. Extensional displacements are restored using a pole of rotation deduced from the curvature of stretching lineation trends at core complex scale. It is argued that the Rhodope Core Complex has recorded at least 120 km of extension in the North Aegean, since the last 40 My

    Subduction or sagduction? Ambiguity in constraining the origin of ultramafic–mafic bodies in the Archean crust of NW Scotland

    Get PDF
    The Lewisian Complex of NW Scotland is a fragment of the North Atlantic Craton. It comprises mostly Archean tonalite–trondhjemite–granodiorite (TTG) orthogneisses that were variably metamorphosed and reworked in the late Neoarchean to Paleoproterozoic. Within the granulite facies central region of the mainland Lewisian Complex, discontinuous belts composed of ultramafic–mafic rocks and structurally overlying garnet–biotite gneiss (brown gneiss) are spatially associated with steeply-inclined amphibolite facies shear zones that have been interpreted as terrane boundaries. Interpretation of the primary chemical composition of these rocks is complicated by partial melting and melt loss during granulite facies metamorphism, and contamination with melts derived from the adjacent migmatitic TTG host rocks. Notwithstanding, the composition of the layered ultramafic–mafic rocks is suggestive of a protolith formed by differentiation of tholeiitic magma, where the ultramafic portions of these bodies represent the metamorphosed cumulates and the mafic portions the metamorphosed fractionated liquids. Although the composition of the brown gneiss does not clearly discriminate the protolith, it most likely represents a metamorphosed sedimentary or volcano-sedimentary sequence. For Archean rocks, particularly those metamorphosed to granulite facies, the geochemical characteristics typically used for discrimination of paleotectonic environments are neither strictly appropriate nor clearly diagnostic. Many of the rocks in the Lewisian Complex have ‘arc-like’ trace element signatures. These signatures are interpreted to reflect derivation from hydrated enriched mantle and, in the case of the TTG gneisses, partial melting of amphibolite source rocks containing garnet and a Ti-rich phase, probably rutile. However, it is becoming increasingly recognised that in Archean rocks such signatures may not be unique to a subduction environment but may relate to processes such as delamination and dripping. Consequently, it is unclear whether the Lewisian ultramafic–mafic rocks and brown gneisses represent products of plate margin or intraplate magmatism. Although a subduction-related origin is possible, we propose that an intraplate origin is equally plausible. If the second alternative is correct, the ultramafic–mafic rocks and brown gneisses may represent the remnants of intracratonic greenstone belts that sank into the deep crust due to their density contrast with the underlying partially molten low viscosity TTG orthogneisses

    Wide hot orogens and flow regimes of weak lithospheres : A precambrian perspective

    No full text
    International audienc
    corecore