252 research outputs found

    SERMeQ Model Produces a Realistic Upper Bound on Calving Retreat for 155 Greenland Outlet Glaciers

    Full text link
    The rate of land ice loss due to iceberg calving is a key source of variability among model projections of the 21st century sea level rise. It is especially challenging to account for mass loss due to iceberg calving in Greenland, where ice drains to the ocean through hundreds of outlet glaciers, many smaller than typical model grid scale. Here, we apply a numerically efficient network flowline model (SERMeQ) forced by surface mass balance to simulate an upper bound on decadal calving retreat of 155 grounded outlet glaciers of the Greenland Ice Sheet—resolving five times as many outlets as was previously possible. We show that the upper bound holds for 91% of glaciers examined and that simulated changes in terminus position correlate with observed changes. SERMeQ can provide a physically consistent constraint on forward projections of the dynamic mass loss from the Greenland Ice Sheet associated with different climate projections.Key PointsWe test an upper‐bound model of calving retreat of 155 ocean‐terminating outlet glaciers that drain the Greenland Ice SheetOur physics‐based method produces terminus positions that correlate with observed positions for 103 glaciers without model tuningOur model bounds retreat rates on 91% of glaciers tested, providing a constraint for future sea level projectionsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163401/3/grl61420-sup-0003-2020GL090213-Text_SI-S01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163401/2/grl61420_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163401/1/grl61420.pd

    Detrital Thermochronometry Reveals That the Topography Along the Antarctic Peninsula is Not a Pleistocene Landscape

    Get PDF
    Using offshore detrital apatite (U‐Th)/He thermochronometry and 3D thermo‐kinematic modeling of the catchment topography, we constrain the timing of major topographic change at Bourgeois Fjord, Antarctic Peninsula (AP). While many mid‐latitude glacial landscapes developed primarily in response to global cooling over the last ~2.6 Ma, we find that kilometer‐scale landscape evolution at Bourgeois Fjord began ~30–12 Ma ago and <2 km of valley incision has occurred since ~16 Ma. This early onset of major topographic change occurred following the initiation of alpine glaciation at this location and prior to the development of a regional polythermal ice sheet inferred from sedimentary evidence offshore of the AP. We hypothesize that topographic change relates to (i) feedbacks between an evolving topography and glacial erosion processes, (ii) effects of glacial‐interglacial variability, and (iii) the prevalence of subglacial meltwater. The timing and inferred spatial patterns of long‐term exhumation at Bourgeois Fjord are consistent with a hypothesis that glacial erosion processes were suppressed at the AP during global Plio‐Pleistocene cooling, rather than enhanced. Our study examines the long‐term consequences of glacial processes on catchment‐wide erosion as the local climate cooled. Our findings support the hypothesis that landscapes at different latitudes had different responses to global cooling. Our results also suggest that erosion is enhanced along the plateau flanks of Bourgeois Fjord today, which may be due to periglacial processes or mantling via subglacial till. If regional warming persists and meltwater becomes more pronounced, we predict that enhanced erosion along the plateau flank will accelerate topographic change

    A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151877/1/jgrf21080.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151877/2/jgrf21080_am.pd

    Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier

    Get PDF
    Supraglacial lakes are known to influence ice melt and ice flow on the Greenland ice sheet and potentially cause ice shelf disintegration on the Antarctic Peninsula. In East Antarctica, however, our understanding of their behavior and impact is more limited. Using >150 optical satellite images and meteorological records from 2000 to 2013, we provide the first multiyear analysis of lake evolution on Langhovde Glacier, Dronning Maud Land (69°11â€ČS, 39°32â€ČE). We mapped 7990 lakes and 855 surface channels up to 18.1 km inland (~670 m above sea level) from the grounding line and document three pathways of lake demise: (i) refreezing, (ii) drainage to the englacial/subglacial environment (on the floating ice), and (iii) overflow into surface channels (on both the floating and grounded ice). The parallels between these mechanisms, and those observed on Greenland and the Antarctic Peninsula, suggest that lakes may similarly affect rates and patterns of ice melt, ice flow, and ice shelf disintegration in East Antarctica

    Climate Noise Influences Ice Sheet Mean State

    Get PDF
    Evidence from proxy records indicates that millennial‐scale abrupt climate shifts, called Dansgaard‐Oeschger events, happened during past glacial cycles. Various studies have been conducted to uncover the physical mechanism behind them, based on the assumption that climate mean state determines the variability. However, our study shows that the Dansgaard‐Oeschger events can regulate the mean state of the Northern Hemisphere ice sheets. Sensitivity experiments show that the simulated mean state is influenced by the amplitude of the climatic noise. The most likely cause of this phenomenon is the nonlinear response of the surface mass balance to temperature. It could also cause the retreat processes to be faster than the buildup processes within a glacial cycle. We propose that the climate variability hindered ice sheet development and prevented the Earth system from entering a full glacial state from Marine Isotope Stage 4 to Marine Isotope Stage 3 about 60,000 years ago

    Hot spots of glacier mass balance variability in Central Asia

    Get PDF
    The Tien Shan and Pamir mountains host over 28,000 glaciers providing essential water resources for increasing water demand in Central Asia. A disequilibrium between glaciers and climate affects meltwater release to Central Asian rivers, challenging the region's water availability. Previous research has neglected temporal variability. We present glacier mass balance estimates based on transient snowline and geodetic surveys with unprecedented spatiotemporal resolution from 1999/00 to 2017/18. Our results reveal spatiotemporal heterogeneity characterized by two mass balance clusters: (a) positive, low variability, and (b) negative, high variability. This translates into variable glacial meltwater release (≈1–16%) of annual river runoff for two watersheds. Our study reveals more complex climate forcing-runoff responses and importance of glacial meltwater variability for the region than suggested previously.ISSN:0094-8276ISSN:1944-800

    Proglacial icings as indicators of glacier thermal regime : ice thickness changes and icing occurrence in Svalbard

    Get PDF
    Proglacial icings (also known as naled or aufeis) are frequently observed in the forefields of polar glaciers. Their formation has been ascribed to the refreezing of upwelling groundwater that has originated from subglacial melt, and thus the presence of icings has been used as evidence of polythermal glacier regime. We provide an updated analysis of icing occurrence in Svalbard and test the utility of icings as an indicator of thermal regime by comparing icing presence with: (1) mean glacier thickness, as a proxy for present thermal regime; and (2) evidence of past surge activity, which is an indicator of past thermal regime. A total of 279 icings were identified from TopoSvalbard imagery covering the period 2008-2012, of which 143 corresponded to icings identified by Bukowska-Jania and Szafraniec (2005) from aerial photographs from 1990. Only 46% of icings observed in 2008-2012 were found to occur at glaciers with thicknesses consistent with a polythermal regime, meaning a large proportion were associated with glaciers predicted to be of a cold or transitional thermal regime. As a result, icing presence alone may be an unsuitable indicator of glacier regime. We further found that, of the 279 glaciers with icings, 63% of cold-based glaciers and 64% of transitional glaciers were associated with evidence of surge activity. We therefore suggest that proglacial icing formation in Svalbard may reflect historical (rather than present) thermal regime, and that icings possibly originate from groundwater effusion from subglacial taliks that persist for decades following glacier thinning and associated regime change
    • 

    corecore