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Abstract. Interpreting the relationships among the internal processes of

glaciers and their mesoscale structural products has been a longstanding chal-

lenge for glaciologists. Trapridge Glacier is a small polythermal surge-type

valley glacier that has been studied for 40 years. It offers an opportunity to

investigate the structural evolution of a glacier through a series of surges,

and to apply novel modeling approaches to gain physical insight as to how

different structures are formed. Following the glacier’s most recent slow surge,

the structural attributes were documented, with emphasis on their three-dimensional

geometry and sequential development: ice stratification (S0), longitudinal fo-

liation (S1) and associated medial moraine, folding of stratification (F1), trans-

verse foliation (S2), thrusts (S3) and recumbent folds (F3), fractures (surface

crevassing and crevasse traces) (S4). Efforts to represent these structures us-

ing models of glacier flow dynamics remain at an early stage but provide in-

formative tests of model skill and of current understanding of the processes

that control structure generation. Using field interpretations as a guide to

the relevant processes of formation, structures on Trapridge Glacier are com-

pared with computer-simulated structures for the same glacier. Modeling achieved

the greatest success in simulating moraine patterns, ice stratification, lon-

gitudinal foliation, and the downglacier decrease in the density of surface crevasse

traces. The least successful effort was to simulate the orientation of crevasse

traces.

Keypoints:
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• The formation and evolution of structures in a polythermal surging glacier

have been subjected to combined field and modeling analysis.

• The model-calculated deformation gradient reveals how total strain in-

fluences the development of longitudinal foliation in glaciers.

• Crack modeling yields an explanation for the observed downglacier de-

crease in fracture density at the glacier surface.
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1. Introduction

The aim of this paper is to describe, evaluate, and model the structures of a polythermal

glacier as it progressed through a slow surge ca. 1980–2000 [Frappé-Sénéclauze & Clarke,

2007]. Slow surging is a little-studied phenomenon that shows many of the attributes of a

conventional surge but is less intense and lasts far longer. A focus of the field study was

on discriminating between structures formed during quiescence and those developed as a

surge front moved through the glacier. An important function of the modeling effort is to

test whether the surging and non-surging variants of the same model were equally effective

at generating the observed structures. In a companion paper [Clarke & Hambrey , 2019]

we present details of the physics and numerics of the model and use idealized diagnostic

models to explore a range of influences on structure generation.

Several studies have been undertaken on the structural evolution of surge-type glaciers.

The most detailed has been on the temperate Variegated Glacier in SE Alaska, following

the 1982–1983 surge, where foliation-development characterized quiescent-phase deforma-

tion, and crevasse formation and thrusting characterized surge-phase deformation [Law-

son, 1994]. Polythermal glaciers in Svalbard, where the surge phase typically lasts several

years, have also received attention [Dowdeswell & Lindsay Collin, 1990; Hambrey et al.,

1996; Glasser et al., 1998; Murray et al., 2000; Murray & Booth, 2010; Woodward et al.,

2002; King et al., 2015; Sevestre et al., 2018]. These studies explored the relationships

among foliation, crevasses, crevasse traces, and thrusts in both their quiescent and active

states.
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Trapridge Glacier is well-suited to investigations of structural evolution. For four

decades this glacier has been studied from perspectives that include thermal regime [Jarvis

& Clarke, 1975; Clarke & Blake, 1991; Frappé-Sénéclauze & Clarke, 2007], glacier hydrol-

ogy [Stone & Clarke, 1993; Murray & Clarke, 1995; Clarke, 1996; Stone et al., 1997;

Flowers & Clarke, 2000, 2002a, b], and basal flow and subglacial till deformation [Blake

et al., 1992; Fischer & Clarke, 1997a, b; Fischer et al., 1999]. Until now, however, the

structure of the glacier has not been evaluated. In 2006, the development of ice-marginal

cliff sections enabled a unique three-dimensional perspective to be obtained.

This contribution focuses on the formation and transport of medial moraines, the devel-

opment of stratification and foliation structures, fold and thrust structures exposed in the

terminal cliff, and characteristics of crevasse traces at the glacier surface. We also focus on

a number of elevated surfaces on the glacier (“mounds”) which are inferred to be related

to uneven bed topography and hence to potential “sticky spots”. Differences between the

structural assemblages associated with the slow surge and those found on faster surge-

type glaciers and differences between structures in surging and non-surging glaciers are of

special interest. Structural development in glaciers, whether surging or not, appears to be

highly individual, and thus field comparisons can be misleading. Comparative modeling

offers a new approach.

Structural investigations have wide-ranging implications regarding the dynamic history

of glaciers. This is especially true today when most glaciers are receding and down-

wasting, and where structures reveal a more dynamic state in the past (Hambrey et al.,

2005; Lovell et al., 2015a). Numerical modeling allows past dynamic history to be quan-

tified in terms of stress and cumulative strain, and provides a better understanding of
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physical processes. Such approaches have been applied to ice caps and valley glaciers

with steady-state flow characteristics (Hudleston & Hooke, 1980; Hubbard & Hubbard,

2000; Hambrey et al., 2005), but this paper represents a first attempt to model structural

evolution in a surge-type glacier.

2. Topographic and Glaciological Context of Trapridge Glacier

Trapridge Glacier is a ∼4 km-long outlet glacier on the eastern flanks of Mt. Wood

(61◦14′N, 140◦20′W) in Kluane Park Reserve, Yukon, Canada (Figure 1). The glacier

has two main flow units (south and north) separated by a prominent medial moraine,

and there is also a dynamically separate and slow-moving “northern arm” which forms

a broad unconstrained moraine. Trapridge Glacier surged prominently in the 1940s, and

relict crevasses from the surge are clearly visible in 1951 aerial photographs. Following

this event, the glacier stagnated in situ until a new surge front, evident in 1970s aerial

photographs, began to move through the glacier. By the early 21st century much of

the lower glacier had melted, leaving behind a sheet of basal till. Meanwhile, the surge

front reached the apparent snout and was overriding the basal till zone. Field exami-

nation of glacier structure occurred in July–August 2006 (year 2006.6 in decimal years).

Conditions at that time were not particularly favorable for surface structural investiga-

tion because of the short duration that the tongue was snow-free. Furthermore, there

are no high-resolution photographic or satellite images available for mapping glacier-wide

structures. Hence detailed structural mapping was not feasible, although the geometrical

characteristics of key structures were documented.

According to the geophysical classification (Ahlmann, 1935), Trapridge Glacier is sub-

polar. Its mean annual surface temperature is sub-freezing whereas a large part of the
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glacier bed is at the melting point (Jarvis & Clarke, 1975; Clarke & Blake, 1991). Thus

the glacier is polythermal but, unlike the idealized thermal structures proposed in Blatter

& Hutter (1991), there is no evidence for a temperate ice layer of finite thickness. During

the slow surge, temperatures of −7◦C were measured at 15 m depth at an experimen-

tal site in the lower tongue. Here the ice was 60–70 m thick and the velocity rose from

14 m a−1 in 1974 to 42 m a−1 in 1984, dropping to 9 m a−1 in 2005 after passage of the

surge front [Frappé-Sénéclauze & Clarke, 2007]. Basal conditions are well known in the

warm-based middle part of the glacier, which was surrounded by a perimeter of cold-based

ice [Clarke et al., 1984; Blake et al., 1992]. A bed of permeable till was identified, which

was deforming to a depth of at least 0.3 m [Blake et al., 1992]. Sliding and bed defor-

mation accounted for up to 90% of the velocity in the late 1990s where the basal ice was

demonstrably at the pressure melting point [Flowers & Clarke, 2002b].

3. Structural Evolution Through a Surge Cycle

Trapridge Glacier is known to have surged previously in the 1940s. A photograph by

R. P. Sharp from 1941 [Frappé-Sénéclauze & Clarke, 2007, Fig. 1] shows a surge front in

roughly the same position as the marginal cliff of the latest surge, advancing into an area

of seemingly stagnant ice. Spanning the period from 1951 to 1981, a series of Canadian

Government aerial photographs (Figure 2) shows the termination of the 1940s surge and

the development of the most recent surge.

Ice extent in 1951 (Figure 2a) shows that the glacier tongue was almost entirely crevassed

and close to its maximum position. Crevasses, which were mainly transverse and diagonal

in orientation, were heavily ablated and many were water-filled. The surge shows a sub-

sidiary lobe at the northern margin, apparently related to a longitudinal debris mound
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that diverted part of the flow away from the main trunk. The same mound was visible

in 2006, when it was noted to be ice-cored. Ice in this mound thus predates the 1940s

surge. Frappé-Sénéclauze & Clarke [2007] noted that the 1940s surge lasted no more than

a decade, quite different from the slow-build-up of the recent surge. The intensity of

crevassing suggests that the 1940s surge was a typical surge rather than a slow one.

The 1972 ice extent (Figure 2b) shows that all crevasses in the lower glacier, apparent in

Figure 2a, had by now ablated, revealing a medial moraine, strong longitudinal foliation,

and supraglacial streams. The northern margin was covered by extensive debris, and a

diagonal debris-draped limestone ridge projected through the ice. In contrast, the middle

part of the glacier was reactivated as a new surge front moved through the glacier. This

was denoted by a prominent bulge, truncating the medial moraine, behind which were

extensive areas of transverse, diagonal and longitudinal crevasses, as well as extensive

crevasse-free areas.

In 1977 (Figure 2c) the dead ice area was still prominent with its longitudinal foliation,

supraglacial stream network, and bedrock ridge. Debris cover (known to be basal from

2006 observations) was more extensive than in 1972. The surge front was more prominent

with crevasses of variable orientation, but the glacier surface still had extensive areas of

crevasse-free ice. The medial moraine was visible in the surge front for a short distance

upglacier. By 1981 (Figure 2d), the dead ice area showed less exposed ice and more

extensive areas of basal debris. The surge front and active glacier ice behind was similar

to that in 1977. For subsequent years, no equivalent aerial photographs are available for

comparison, but by 2006 ground observations showed that the original dead ice area was
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no longer visible, although remnants were suspected under a cover of till. The surge front

formed a terminal cliff that was slowly back-wasting.

4. Post-surge Structural Attributes

Structural observations from the surge phase itself are limited, but, following complete

cessation of the surge in 2005 [Frappé-Sénéclauze & Clarke, 2007], the ice surface became

more accessible, and most of the lower glacier tongue could be investigated. By this

time, the surge front coincided with the visible terminus of the glacier, having advanced

several hundred meters further than in 1981, when the last aerial photograph was taken.

Structures are described in the order in which they evolved in the glacier as determined

from cross-cutting relations, and using standard structural geological notation for planar

structures and folds (Table 1).

4.1. Overall Structure and Medial Moraine Pattern

Trapridge Glacier is a composite glacier, with two main flow units (north and south),

separated by a medial moraine (Figure 3). Field measurements indicate that each flow

unit has a slightly different structural history. The medial moraine defines the average

flow direction close to the centerline. Where excavated, the moraine forms a 5–10 cm

cover of debris over apparently clean ice. Debris comprises mainly angular cobbles and

lesser proportions of pebbles and boulders. Sand and granules from this moraine are

concentrated in places by supraglacial streams. The debris is angular and interpreted as

being of supraglacial origin, and the source of the debris is clearly associated with a steep

unstable rock face that forms the glacier headwall. In contrast to the main tongue, a

dynamically separate extension of the north flow unit, which appears not to have been
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involved in the most recent surge, displays prominent regular layering. This is interpreted

as primary stratification, which comprises low-dip layers that individually can be followed

for more than 100 m; in one place an unconformity was observed. Few fractures are visible

in this part of the glacier.

In the following sections we describe the observed 2006.6 stratification and foliation

structures (Figures 4 and 5), fold structures (Figure 6), and fractures and crevasse traces

(Figure 7). We then develop models of the formation and evolution of these structures

and compare simulation results with field observations.

4.2. Stratification (S0) and Folding (F1)

The first structure to appear in the glacier below the temporary snow-line, labeled S0,

was a set of continuous gently dipping layers of coarse bubbly ice separated by diffuse

dirty bubbly layers. This structure is especially visible in the higher part of the ablation

area (Figure 4a), but is not well preserved in the lower glacier tongue. Its association

with snowpack-layering indicates that the structure is primary stratification. It displays

an open wavy style of folding (F1), and locally a tighter similar-style of folding, associated

with which is a weak axial-planar foliation (S1). Fold axes, where measured, have a low

upglacier plunge. Locally, stratification is associated with debris of supraglacial character

(angular clasts; few fines).

4.3. Longitudinal Foliation (S1)

Longitudinal foliation is ubiquitous throughout the tongue of Trapridge Glacier, but is

commonly faint (Figure 4b). It is best developed close to the medial moraine, to which it

is parallel. For this near-vertical structure, foliation is defined principally by crystal size,
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bubble elongation, and bubble density, variations of which ablate at different rates giving

a ridge-and-furrow appearance. The foliation is commonly rotated, or offset between

fractures (described as crevasse traces). Locally, especially near the northern margin,

foliation is parallel to mud layers (including orange clay). The geometry of longitudinal

foliation is less consistent than in most valley glaciers. Nevertheless, on plotting three-

dimensional data of poles to foliation across the lower glacier tongue, there is strong

clustering (Figure 5) on stereonets.

Points on the scatterplot of Figure 5 correspond to the stereographic projection of

points onto the surface of the lower hemisphere of a unit sphere. Each point p is as-

sociated with the intersection of a unit vector np
j = [np

1, n
p
2, n

p
3] with the surface of the

this hemisphere. Given N data points and sufficiently large N , the structure tensor is

Υjk = 〈np
jn

p
k〉, where angular brackets indicate averaging over the N data points, e.g.,

〈np
1n

p
2〉 = 1

N
ΣN
p=1n

p
1n

p
2. The tensor is symmetric and its eigenvalues and eigenvectors are

readily calculated (Table 2). The N1 eigenvector, which is associated with the largest

eigenvalue λ1, is sub-horizontal and has north–south alignment, indicating that the dip

of the plane of the foliation is near-vertical and the strike direction is east–west, roughly

aligned with the ice flow direction. Foliation is commonly associated with sub-meter-scale

folds but, despite a search, only a handful of these were observed at Trapridge Glacier.

Where measured, the fold axes deviated somewhat from parallelism with flow.

From field observations, the foliation is interpreted as having formed in a simple shear

regime, where wide flow units converge to form a narrower tongue, a feature of many poly-

thermal glaciers with multiple accumulation basins, e.g., White Glacier on Axel Heiberg

Island [Hambrey & Müller , 1978] and Midtre Lovénbreen in Svalbard [Hambrey et al.,
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2005]. The distortion of foliation in places is inferred to be the result of rotation of inter-

crevasse blocks, deflection by subglacial ridges or the result of sticky spots (e.g., locally

frozen areas) at the bed.

4.4. Transverse Foliation (S2)

Confined to the south flow unit, this structure consists of poorly defined anastomosing

layers of coarse clear ice within a predominantly coarse bubbly ice mass. Where observed

in mid-tongue this foliation dipped at 30–50◦ upglacier, but probably started with near-

vertical dip. This structure is interpreted as originally forming as crevasse traces in a zone

of transverse crevassing, followed by longitudinal compression. Similar structures, albeit

much more pronounced, have been recorded below icefalls in Blue Glacier, Washington

[Allen et al., 1960], and Griesgletscher, Swiss Alps [Hambrey and Milnes , 1977].

4.5. Low-angle Fractures, Associated Debris (S3), and Recumbent Folding

(F3)

The terminal cliff of Trapridge Glacier displays a series of prominent coarse-clear ice

and debris layers, commonly extending for tens of meters where clean washed surfaces

were available, spaced typically up to a meter. These structures intersect the longitudinal

foliation, which shows up weakly in the cliff. These ice and debris layers are intimately

associated with meter-scale recumbent folding of both similar and isoclinal types, with

decimeter-scale parasitic folds being common on the limbs of the larger folds (Figure 6a).

Fold axes appeared to be near-horizontal and subparallel to the ice front. The debris

layers are themselves folded; alternatively, they bound complex folded zones (Figure 6b).

Most of these layers dip downglacier, but less steeply than the underlying bed, so they

tend to converge towards the bed and, in the other direction, some terminate abruptly
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(Figure 6c). The debris that melts from these layers is poorly sorted, ranging in size

from silt to boulder, which can be classed as muddy boulder-gravel or clast-rich muddy

diamicton. Clasts shapes are predominantly subangular and subrounded, and some clasts

are striated. The structures closely resemble those described in surge-type Tunabreen in

Svalbard (Lovell et al., 2015b).

These low-angle fractures are interpreted as thrusts on account of their asymptotic rela-

tionship with the bed and with each other, while the debris has the texture and clast-shape

characteristics of basal debris that has been elevated to a higher position. Thrusts have

been described from other polythermal glaciers that surge, notably in Svalbard including

Kongsvegen [Glasser et al., 1998; Murray & Booth, 2010], and Bakaninbreen [Hambrey

et al., 1996; Murray et al., 2000]. However, all these thrusts are geometrically different,

notably in being higher angle (typically with an upglacier dip of up to 50◦). The recum-

bent folding is believed to be synchronous with an on-going thrusting process, because

both the debris layers are themselves folded, and the folds themselves have sheared off

lower limbs. The all-pervasive nature of this process along the terminal cliff suggests that

propagation of the surge front is accomplished by deformation of the glacier bed [Clarke

& Blake, 1991], which is manifested in terms of thrusting and folding of debris layers.

4.6. High-angle Fractures and Veins (S4)

A variety of high-angle fractures and veins, referred to as crevasse traces, are the most

noticeable structures on the surface of Trapridge Glacier. They are all-pervasive and

are of many different orientations; their geometry and orientation are considered in the

following section. Fracture sets are commonly parallel to the relatively small number

of surviving open crevasses. These include sharply defined narrow transverse crevasses
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(50 cm wide) in the higher part of the ablation area to broad open ablated longitudinal

crevasses near the snout (Figure 7a). Fractures range in length from a few meters (Figure

7b) to 10s of meters. They commonly intersect each other, as well as the foliation (Figure

7c), sometimes displaying displacements of a few centimeters. Fractures are of two types:

water-frozen fractures from a few centimeters to over a meter wide comprising candle-like

ice crystals; thin cracks on the glacier surface which on close inspection are veins a few

centimeters wide, comprising clear ice crystals extending orthogonally from coarse bubbly

ice sides, and with a central suture. These attributes are observable only when weathered

ice is removed (Figure 7d). The presence of so many crevasse traces influences supraglacial

drainage, and many examples of streams flowing along the fractures, including changing

direction where intersections occurred, were observed.

4.7. Fracture Analysis

The inferred crevasse traces (S4) were systematically measured in the field in two- and

three-dimensions to establish how their geometry and density changed along the flow-

centerline of the glacier, and the significance of glacier surface-mounds in relation to

subglacial topography. Sampling sites are illustrated in Figure 1c.

4.7.1. Fracture Orientation

Poles to crevasse traces are plotted on lower hemisphere equal-area (Schmidt) projec-

tions from six sites along the flow-centerline (Figure 1c), broadly defined by the medial

moraine and surveyed flow marker stakes, and from three glacier surface-mounds (Fig-

ure 1c), including one (FC3) which represents both sets of data. Data are presented as

scatter-plots, contour-plots, and two-dimensional rose diagrams (Figure 8).
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On the flow-centerline three-dimensional plots show a range of cluster styles and variable

relationships with flow direction (Figure 8). Clusters are tight, broad girdles or double-

peaked, with one girdle (FC1) showing that the majority of crevasse traces are parallel to

flow. In contrast FC2 shows crevasse traces aligned orthogonal to flow. The other sites

(FC3–FC5, FC7) show no systematic relationship to flow direction. Where present, open

crevasses tend to be parallel to the dominant grouping of crevasse traces.

Two of the surface mounds (M1, M4) have two crevasse-trace maxima, orthogonal to

each other, one of which coincides with the trend of open crevasses, but the relationship

with flow direction is only clear in one case (45◦ to both maxima) (Figure 8). A third

mound (M3 not plotted) has one strong and one weak maximum, with flow direction

slightly offset from the first.

4.7.2. Fracture Density

Overall, fracture density varied from 0.64 to 3.02 m−2 (obtained from Figures 9 and 10

by dividing the counts by the 50 m2 sampled area). Along the flow-centerline the crack

density is variable, with a peak near the middle basin and a decline towards the snout.

Density values for the glacier surface-mounds (M1–M3, FC3) are inconsistent, but are

higher than the average of 1.71 m2.

There is no consistent pattern of a particular class (transverse, diagonal, longitudi-

nal) dominating, although, in all except one case, longitudinal fractures are least com-

mon. Summing all the available data (855 crevasse traces), the breakdown is: transverse

44%; diagonal 39%; and longitudinal 17%, suggesting that longitudinal extension (causing

transverse fractures) was dominant following passage of the surge front.
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5. Structure Modeling

A thermomechanical ice dynamics model for Trapridge Glacier is a necessary prerequi-

site to the structure modeling. For the surface topography of the ice dynamics model we

used the Natural Resources Canada 30-meter Digital Elevation Model (DEM). Elevation

data were converted from the native Yukon Albers projection to a Zone 7 UTM projec-

tion with the NAD27 geodetic datum, the same projection used for Trapridge Glacier field

work dating from 1967 [Collins , 1972] to 2007. Ice masks for 1951, 1970, 1972, 1977, and

1981 were produced from georeferenced vertical aerial photography [Frappé-Sénéclauze,

2006] and the grid boundaries for the ice dynamics model were prescribed (green dashed

outline in Figure 1b). Bed topography (Figure 11) for ice-covered regions within the com-

putational grid was interpolated from a geophysically derived bed map [Flowers & Clarke,

1999] and, where measurements were lacking, estimated using a simplified version of the

Clarke et al. [2013] method. Figure 11 also shows the modeled ice margin for 2006.6 (blue

outline), the assumed equilibrium line altitude (ELA, green solid line), and the assumed

maximum extent of the fast-sliding zone during surges (red outline with pink shading).

The solid circles (red, black, and green) indicate three points at which rock debris is de-

posited on the glacier surface (these are associated with the steep headwall immediately

to the west of these points). The centerline and mound sites (e.g., FC1 and M1) at which

measured and modeled ice structures can be compared are also indicated. With the fol-

lowing exceptions the model parameters are identical to those in Table 1 of Clarke & Ham-

brey [2019]: Zela=2550 m, [dḃ/dz]acc=5.5556 × 10−3 yr−1, [dḃ/dz]abl=1.1111 × 10−3 yr−1,

Cslide=5.0 × 10−10 m yr−1 Pa−2, Csurge=5.0 × 10−9 m yr−1 Pa−2, Nx=186, Ny=96, Nξ=31,

and Nζ=11.
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Thermomechanical ice dynamics models solve for ice thickness H(x, y, t), temperature

T (x, y, z, t), and the velocity field v(x, y, z, t). Following Greve & Blatter [2009] we employ

the shallow ice approximation. With the flow solution in hand, it is a short step to

calculate the tensors for velocity gradient Ljk, deformation rate Djk = 1
2
(Ljk + Lkj),

spin Wjk = 1
2
(Ljk − Lkj), deviatoric stress sjk, and other potentially useful quantities

(for additional details see Clarke & Hambrey [2019]). We did this at every time tn and

point xk in the Nx×Ny×Nξ computational grid and archived the results for a single 50-

year cycle. The assumption of cyclic surging is helpful because it reduces the size of this

archive without limiting the time span of the model. Non-surging versions of an otherwise

identical model were obtained by setting Csurge=Cslide to eliminate fast-flow episodes.

For the Trapridge Glacier model, surges are assumed to have 13-year duration, including

a 3-year acceleration phase and a 2-year termination phase, followed by a 37-year quiescent

phase. These assignments represent an effort to reconcile the general features of the most

recent surge with an assumed 50-year cycle. In the model, surges are induced by expanding

the area of an assumed fast-sliding zone (Figure 11) following Clarke & Hambrey [2019].

We examine how conditions for structure generation vary over a single surge cycle. We

make a distinction between “kinematic structures”, which are the passive consequence

of glacier flow, and “dynamic structures”, which are constructional and require work to

be done. Examples of the former are moraine patterns, the S0 stratification, and the S1

foliation; examples of the latter are thrusting (S3) and crevasse formation (S4).

We associate dynamic structures with deformational work. Because ice is assumed to

be incompressible in the glacier flow model, the modeled deformation of an ice parcel

can involve changes of shape but not volume. Constrained by this limitation, the power
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density of deformational work (rate of deformational work per unit volume (W m−3)) is

PD = Ljksjk = Djksjk, where we assume the Einstein summation convention for repeated

subscripts (hence PD = Σj,kLjksjk). For perspective, PD is proportional to the strain

heating associated with internal friction of the ice flow (e.g., Clarke et al., 1977) which is

analogous to the heating that one experiences while repeatedly bending a paper clip. We

assume that the rate of construction of dynamic structures is roughly proportional to PD.

Figure 12 shows plots of time series for volume-averaged power density and for the

rate of change of glacier area over one cycle of surging. From 1955–1985 (during the

quiescent phase) power density varies slowly and monotonically as the glacier thickens;

the rate of change of glacier area shifts from negative to positive around 1970, marking the

change from post-surge disintegration to pre-surge buildup. (Fluctuations in this curve

occur because ice area changes in discrete steps; thus time derivatives calculated by finite-

differences have a saw-tooth character.) The maximum power density and maximum rate

of change of ice area occur simultaneously around 1990 and then decrease from 1990–1998

when the surge terminates.

Comparing the time-averaged deformational power density (red dashed line) with that

of a non-surging but otherwise identical model (green dashed line) shows only a small

difference. In the same setting, surging and non-surging glaciers share the same task:

to transfer solid precipitation from the accumulation area to the ablation area where

ice is melted. They accomplish this in different ways: episodic transport of ice from one

reservoir to another for surging and steady transport for non-surging. The slight difference

between the time averages for these two extremes (Figure 12) suggests that one must be
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cautious in assuming that surging glaciers are exceptionally vigorous geomorphic agents.

They work fast but sporadically.

Figure 13 shows maps of vertically-integrated power density at various phases of the

surge cycle. The surge onset is at 1985 and the snapshots for 1986, 1987, and 1988,

indicated by yellow markers (Figure 12), show the accelerating phase of the surge; those

for 1990 and 1995 show the fully-developed surge, and those for 2000 and 2005 the post-

surge quiescence. The color scale is the same for all maps. Surge activation is first

apparent in the map for 1986; from 1986–1988 the activation zone expands as it sweeps

downglacier. To this point there is little change at the ice margins. By 1990 the activation

zone has reached the terminus and the glacier front begins to advance down-valley. The

power density plot (Figure 12) shows that the average rate of dissipation of deformational

energy reaches a maximum at roughly the same time as the activation zone reaches the

glacier terminus, at which time the rate of change of area increases dramatically. The

surge terminates in 1998 and the maps for 2000 and 2005 show glacier-wide quiescence.

Because of the assumption of a 50-year surge cycle, a map for 2035 would be identical to

that for 1985.

5.1. Medial Moraine Pattern

The medial moraine is a prominent feature of Trapridge Glacier (Figure 3) and an

obvious target for structure modeling. We trace, through time and space, the trajectories

of surficial rock debris deposited in the glacier accumulation region at points near the

headwall (solid red, black, and green circles in Figure 11). The debris tracks are englacial

for the first segment and become supraglacial at emergence points in the ablation region.

Because the flow is non-steady, the tracks and emergence points vary with time in a
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complex manner. Details of the modeling approach are given in Clarke & Hambrey [2019].

Figure 14 compares the observed and modeled medial moraine tracks and glacier outline

in July 2006 (2006.6). Differences between the observed and modeled pattern are expected

and can be attributed to uncertainty in subglacial topography, to simplifications in the

model (e.g., steady mass balance, prescribed fast-sliding zone, and periodic surge cycle),

and to imprecise mapping of the medial moraine.

Figure 15 shows the modeled time-evolution of the glacier margin and medial moraine

pattern as the glacier progresses through a single 50-year surge cycle. Model year 0

corresponds to the surge onset time as well to years 50, 100, etc. The ice outline for model

year 0 (Figure 15a) resembles the 1981 aerial photograph (Figure 2d). The modeled post-

surge extent (Figures 15a and 15b) is considerably less than that recorded in the 1951

aerial photograph (Figure 2a). The match between the observed and modeled post-surge

states (Figures 2b and 15e) shows that after the vigorous 1940s surge the lower reaches

of Trapridge Glacier retained large areas of stagnant ice for decades after the surge. By

assuming periodic surging and a steady mass balance, the model ignores the substantial

effects of climate change in the study region. When the sliding parameters Cslide and Csurge

were assigned, the aim was to approximate the recent slow surge rather than the 1940s

fast surge. Thus the modeled maximum ice limits agree well with the slow surge limits

and greatly underestimate the 1940s maximum limits suggested in Figure 2a.

5.2. Stratification S0

Primary sedimentary stratification, S0 (Figure 4a) is a structure found in the upper

reaches of many valley glaciers (Hambrey, 1975; Goodsell et al., 2005; Hambrey et al.,

2005; Jennings et al., 2014, 2015), but flow convergence, complex flow over icefalls, and
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surging can erase the record of this structure. On Trapridge Glacier, S0 is clearly displayed

in layered firn (Figure 4a), but is barely discernible in exposed glacier ice, except in its

northern arm. For Trapridge Glacier, the surfaces of S0 are interpreted as isochronal and

this is the key assumption of our effort to model them.

Adapting earlier work on tracer transport modeling [Clarke & Marshall , 2002; Clarke

et al., 2005; Lhomme et al., 2005], we use a semi-Lagrangian method to track the depo-

sitional age td of all points in the computational grid. Figure 16 shows contours of the

modeled depositional date of the exposed ice surface at 2006.6. In nature, the visual record

of annual depositional surfaces is less regular than that of Figure 16 and distinguished by

varying concentrations of dust and fine-grained debris.

Qualitatively the results are akin to the S0 map for the Norwegian glacier, Charles

Rabots Bre [Hambrey , 1975, Fig. 2] but we have no observational basis for evaluating the

simulated S0 stratification of Trapridge Glacier. Nonetheless, Figure 16 contains temporal

information that has potential value for guiding field interpretations. Excluding the near-

vertical terminal ice cliff for which surface ages are not plotted, the oldest exposed surface

ice is ca. 1800 and for most of the exposed ice the age range is 1850–1950. Table 3 gives

the modeled age of ice at the measurement sites. As examples, the model calculates that

surface ice at FC1 was deposited in 1986.4 whereas surface ice at FC7 was deposited in

1836.2. Thus, according to the model, ice at FC1 has experienced a single surge while ice

at FC7 has experienced four cycles of surging. After four surges it is not surprising that

there is no observable trace of the S0 stratification at FC7.
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5.3. Longitudinal Foliation S1

Longitudinal foliation (S1) has been described from several valley glaciers (e.g., Allen

et al., 1960; Hambrey & Müller, 1978; Hambrey et al., 2005; Jennings et al., 2014). On

Trapridge Glacier, S1 is characterized by a longitudinal orientation and high dip angles as

indicated in the stereographic projections (Figure 5) which are replicated here as Figure

17a. The foliation is thought to be associated with large total strains which cause strain

ellipsoids to become flattened and disk-like; the foliation plane is perpendicular to the

direction of maximum shortening (Hooke & Hudleston, 1978).

From a modeling perspective the S1 foliation is best approached by calculating strain

ellipsoids and, from these, inferring the orientation of their axes. A direct approach to

calculating geometric parameters of the strain ellipsoid is to evaluate the deformation

gradient tensor Fjk [e.g., Clarke & Hambrey , 2019] from which the cumulative rotation,

ellipsoid geometry, and other strain indicators can be obtained. The orientation of the

minor axis of the strain ellipsoid is particularly relevant to the S1 foliation because this

indicates the direction of flattening. We therefore test the hypothesis that there is close

correspondence between the plane of flattening and the plane of foliation.

For additional insight it is useful to refer to some specific examples. Table 3 summarizes

the geometric parameters λVk and NV
k of simulated strain ellipsoids calculated from the

Trapridge Glacier model at the flowline and mound measurement sites. Additional infor-

mation such as the ice deposition date, axis ratios, and dip angle of the foliation plane are

also tabulated. In Table 3 the magnitude of the z component of NV
3 indicates whether the

axis of maximum shortening is near-horizontal ([NV
3 ]z→0, hence a steeply-dipping plane)

or near-vertical ([NV
3 ]z→1, hence a near-horizontal plane). The axis ratio κ1:2=λ

V
1 /λ

V
2
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indicates whether the major and intermediate axes of the strain ellipsoid resemble a circle

(κ1:2 ≈ 1) or an elongated ellipse κ1:2 � 1; the axis ratio κ2:3 indicates the degree of

flattening. Factors that might favor development of the S1 foliation are large values of the

dip of the foliation plane (δ3 > 30◦) and substantial ellipsoid flattening (κ2:3 > 5). Sites

having ellipsoid geometries that are most favorable for foliation (κ2:3 > 5) are FC3, FC4,

FC5, M3, and M4; those that are least favorable (κ2:3 < 2) are FC1, FC7, M1, and M2.

Figure 17a indicates that points on the scatterplot correspond to poles of the NV
3 unit

vector, though we have no measurements of the strain ellipsoid at these sites. Following

this logic, the simulated deformation gradient at 121 surface sites for the modeled glacier

can be used to evaluate strain ellipsoid parameters, as for Table 3, and plot poles of

NV
3 for each site (Figure 17b). At this stage the observed and modeled results are not

directly comparable. We have plotted all the modeled points, irrespective of whether they

favor foliation development. In contrast, all the points that correspond to actual field

observations were presumably selected because they were associated with a discernible S1

foliation. This is the justification for “editing” the modeled points. When points with

low values of δ3 or κ2:3 are excluded, the plotted poles of the edited points (Figure 17c)

are in good qualitative agreement with Figure 17a. We color-coded points in Figures

17b and the associated site location map (Figure 17d) to identify points associated with

low values of δ3 (yellow), κ2:3 (green), or both (red). The remaining (“edited”) points in

Figure 17c are indicated in black on the site map. When the same points are used to

form structure tensors Υjk, the observed and modeled eigenproperties are also in good

agreement (Table 2). Given that the specific locations of the field measurement sites for S1

were not recorded, there can be no exact comparison between the measured and modeled
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points. It is interesting that many of the acceptable sites (black dots in Figure 17d) for

the modeled S1 lie close to the flow centerline. This is consistent with the field observation

(subsection 4.3) that the foliation was best developed close to the medial moraine.

5.4. Folding (F1 and F3)

At the 30 m×30 m scale of our ice dynamics model, folding is a sub-grid process so a

direct attack on fold modeling is not feasible. Rather than attempt to model folds, we

highlight the deformation conditions that favor the presence of folded ice. From this per-

spective, the deformation gradient tensor Fjk holds promise because it measures accumu-

lated strain and is closely associated with strain ellipsoids which are useful for visualizing

rotation and strain stretching. However folds cannot be generated by stretching and ro-

tation alone so Fjk cannot capture the complexity that is required for folding. For this

reason we propose that the gradient of the deformation gradient tensor Tijk = ∂Fjk/∂xi

merits attention. On the downside, the Fjk tensor is rank 2 and has 9 scalar components

whereas Tijk is rank 3, has 27 scalar components, and is thus more cumbersome. With

these considerations in mind, we suggest that one of the scalar invariants of Tijk (there

are 12) could serve as a fold-propensity index. The scalar that we propose as a fold index

to parameterize the prevalence of F3 (Table 1) is Q2 = TijiTpjp. As previously stated, we

adopt the Einstein summation convention for repeated subscripts so the fully-expanded

expression is Q2 = (T111 + T212 + T313)
2 + (T121 + T222 + T323)

2 + (T131 + T232 + T333)
2.

An attractive feature of scalar invariants is their independence on the coordinate system.

Glaciologists are most familiar with the second invariant of the deviatoric stress tensor

which appears in the generalized form of Glen’s flow law [e.g., Cuffey & Paterson, 2010,
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p. 59–60]. We continue this discussion and present an algorithm for calculating Tijk in

Clarke & Hambrey [2019].

Figure 18 shows centerline profiles of log10Q2 for two versions of the Trapridge Glacier

model, both observed at 2006.6. The upper panel is for the reference model, which assumes

a 50-year surge cycle, and the lower panel is for a non-surging version of the same model

(Csurge=Cslide). The plots correspond to where folds would be observed but not necessarily

where they form. Warm colors indicate regions that are highly favorable for folds to exist

and cool colors the opposite. Unsurprisingly, folds are expected to be found near the

glacier bed, near bumps in bed topography, and toward the glacier terminus. Near the

glacier terminus, folds that formed at depth can become exposed at the ice surface (Figure

6). Curiously the non-surging model indicates more intense folding than for the surging

model, a result that is counter-intuitive but not necessarily incorrect. It could also point

to shortcomings of the fold index parameterization.

The modeling effort required for evaluating Tijk at selected grid points is substantial

and involves integrations along ice-particle trajectories. The accuracy of these integrations

decreases near the bed and near the terminus. For this reason we have no reliable results

for ice at the bed or near the terminus. The location of the centerline profiles is plotted

in Figure 11.

Unfortunately the observed folds in Trapridge Glacier (Figure 6) are at the glacier

terminus near the bed. Our model is incapable of calculating accurate trajectories for this

ice and thus we have no information on Tijk or Q2 for this part of the glacier. Comparison

between observed and modeled folding is therefore impossible. We know from an earlier

field study [Clarke & Blake, 1991] that basal thrust features develop near the glacier

c©2019 American Geophysical Union. All Rights Reserved.



centerline and upflow from the ice terminus. So, at the very least, the modeled folding

zone is where complex flow is known to occur.

5.5. High-angle Fractures and Veins (S4)

In terms of field effort, the study of high-angle fractures and veins or crevasse traces

(Figures 7, 8, 9, and 10) was the most demanding component of the structure study.

For a combination of reasons, this also constitutes the greatest challenge for structure

modeling. Glen’s flow law and rheological models for glacier flow modeling assume that

ice deforms like a viscous fluid. Thus conventional ice dynamics models can calculate the

advection and rotation of fracture planes. However viscous fluids do not fracture so the

description is incomplete. To circumvent this difficulty it is commonly assumed that the

calculated viscous stresses can be applied, without modification, to ice that is assumed,

on a shorter time scale, to behave as a linearly elastic solid. However, linear elastic solids

do not fracture either, so, as a further step, a fracture stress criterion is invoked. The

foregoing simplifications are standard ones and known as the linear elastic fracture model

(LEFM) [e.g., Smith, 1976; van der Veen, 1998a, b].

In nature, once fracture has occurred, the fractured material is changed and stresses

are rearranged. Whether existing fractures are extended or new fractures introduced is

determined by the stress field in the damaged material; over time cracks can heal. None of

this is treated in the LEFM. Furthermore, the ice dynamics model that we use is based on

the shallow ice approximation [Greve & Blatter , 2009] which yields a less accurate solution

for the stress field than might be achieved with a full stress model [e.g., Gagliardini et

al., 2013]. For the present study we are untroubled by this consideration. It is only one
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of many shortcomings of the fracture modeling and unlikely to explain the differences

between measured and modeled crevasse traces.

Another concern is the inconsistency between how crevasse traces are measured in the

field and how they are treated within the model. For each case, the results of crevasse

trace measurements are assigned to a point on the glacier surface but, in fact, the field

observations are taken over an area of the surface (e.g., 50 m2 for the crack density mea-

surements), then summed, and finally assigned to a point. In contrast, the model tracks

the fate of a single ice particle as it passes through the glacier and records at each time

step the velocity gradient Ljk, stress σjk, and other relevant fields at that point. Frac-

ture is deemed to occur when conditions at the point satisfy specified fracture criteria.

Over time, the point can be subjected to a sequence of fracture failures. In the model, a

nearby point would experience a nearly identical record of fractures. In the field, a crack

credited to a given measurement site (and hence to a given ice particle) might occur at

some distance from the site and the crevasse traces are not concentrated at a single point.

Indeed, if this were the case it would be near-impossible to measure them individually.

5.5.1. Stereoplots

Figure 19 shows the measured (as in Figure 8) and modeled crevasse traces for flow

centerline and mound sites on Trapridge Glacier for the 2006.6 observation year. The

“observed” (estimated from 2006.6 observations at the site) and modeled ice flow direc-

tions are indicated by arrow annotations. Agreement between estimated and modeled

flow directions is best (within ±3.5◦) for sites FC3, FC4, FC5, and M4 and worst for FC1

(±25.9◦) and FC7 (±26.7◦).
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Comparison of the measured and modeled stereoplots and rose diagrams requires aware-

ness of the shortcomings of each approach. It is simplest to compare like-with-like so

we start by comparing the observed and modeled scatterplots (leftmost circles in each

panel). The points represent lower hemisphere projections of poles of crevasse traces and

the majority of these are near the circle perimeter, indicating that both the measured

and modeled fracture planes are near-vertical. In this projection, points near the western

edge correspond to planes that dip to the east and vice versa. A problem with this type

of stereographic projection is that a small difference in the dip angle of the near-vertical

planes can change the dip direction from west to east. This sensitivity to small differences

influences both the scatterplots and the contoured plots of point density (middle circle

in each panel) and must be recognized when observed and modeled result are compared.

With this thought in mind the best agreement between the scatter- and contour plots is

for sites FC1, FC2, FC4, and M4, and the worst for FC7 and M1.

The rose diagrams (rightmost circles in each panel) are two-dimensional and map the

dip directions of crevasse traces. To avoid the problem of sensitivity to the dip direction,

which afflicts the scatter- and contour plots, we treat dip directions as bipolar rather than

unipolar, so that a northward or southward dip are both grouped as north–south and the

resulting rose diagram has point symmetry about its center [as in Hubbard & Glasser ,

2005]. Agreement between measured and modeled rose diagrams is quite good for FC2,

FC3, and FC4; the slight disagreement between the measured and modeled alignments of

patterns could result from differences between the true and modeled flow rotation. Larger

alignment discrepancies are associated with FC1, FC5, and FC7.
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The lack of success in modeling crevasse trace alignment can be largely or entirely

attributed to the crack model and to the timing of surges. By examining modeled ice

particle trajectories for each site (e.g., Figure 3 of Clarke & Hambrey [2019]) we found

that, for most sites, crack damage is incurred near the start and endpoints of the flow

trajectory when the ice particle is near the glacier surface. The depth of penetration

of crevasses is an important consideration and we suspect that this depth varies over

the surge cycle, being deepest when crevasses are isolated rather than closely-space and

influenced by the availability of surface melt water.

5.5.2. Crack Counts and Crack Density

Figure 20 compares the observed (Figure 20a) and modeled (Figure 20b) crack counts

for flow centerline and mound sites. Observed and modeled crack counts are not directly

comparable. Field measurements yield crack counts within a 50 m2 longitudinal swath at

each site which is then applied to a “parcel” of ice, whereas the model accumulates the

crack count experienced by a single ice particle. Thus the precise counts (and the vertical

scales of the bar graphs) cannot be compared.

The most striking feature of the observed crack count is the unexpected tendency for

the count to decrease from a maximum at FC2 (near the ELA) to much lower values

at FC6 and FC7 near the terminus. This trend is highlighted by plotting crack count

vs. downflow distance (Figure 21). The modeled variation of crack count with distance

(Figure 21b) agrees surprisingly well with observations and provides an explanation for

the apparent paradox: surface ice at downglacier sites follows a deeper trajectory than ice

at upglacier sites such as FC2. Because tensile stresses decrease with depth, ice following

a shallow trajectory, like that for FC2, is more fracture-prone than for a deep trajectory.

c©2019 American Geophysical Union. All Rights Reserved.



Despite the apparent success of the modeled crack counts for flow centerline sites there

is a large disagreement between observed and modeled crack counts for the mound sites

with the observations giving high crack counts and the model giving low counts.

We found the simulations of crack density to be strongly dependent on the ice fracture

model; the Nye fracture criterion [Nye, 1957], which predicts shallow crevasse penetra-

tion, yields satisfactory results. An alternative model, suitable for isolated crevasses and

yielding deeper penetration depths [e.g., Smith, 1976; van der Veen, 1998a, b], predicted

a monotonically increasing crack density with distance. For Trapridge Glacier simula-

tions, the Nye model is preferable because, as for other surging glaciers, crevasses tend

to be closely-spaced rather than isolated. Out of interest, we also included simulations

for a non-surging version (Csurge = Cslide) of the Trapridge model (Figure 20c) to examine

whether crack production in a surging glacier differs substantially from that in a non-

surging glacier. The modeled crack densities differ but not in a striking manner.

For both the measured and modeled results the crack counts are binned according to

the observed crack orientations at the 2006.6 measurement sites. Cracks are classified as

diagonal (−70◦<∆ϑ<−20◦ or 20◦<∆ϑ<70◦), longitudinal (−20◦≤∆ϑ≤+20◦), and trans-

verse (−90◦≤∆ϑ≤−70◦ or +70◦≤∆ϑ≤90◦), relative to the inferred or model-calculated

flow direction ϑ. Both the observations and model agree that the crack count for longitu-

dinal cracks is less than for transverse and diagonal cracks but, at most sites, the model

greatly underestimates the frequency of longitudinal cracking. The crack model considers

only Mode I (tensile) failure and allowing other failure modes might increase the crack

diversity.
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5.6. Transverse (S2) Foliation

The field interpretation of the transverse S2 foliation in section 4.4 suggests that the

foliation originated as transverse near-vertical cracks that were subsequently compressed

and vertically-rotated by flow to yield transverse structures having an upglacier dip. Addi-

tionally, the foliation was confined to the south flow unit (i.e., south of the medial moraine

in Figure 14). Figure 22 shows simulated crack orientations for a line of sites in the south

flow unit. For sites SL08 and SL09, 400–500 m far from the glacier terminus, the cracks

tend to be near-vertical and not strongly oriented relative to the ice flow direction. At

site SL10, roughly 200 m from the terminus there is a track of points that correspond to a

set of crack planes having an upglacier dip, and roughly aligned transverse to the ice flow

direction, matching the field description. At site SL11, the crack diagrams become very

simple but continue to correspond to a set of crack planes, oriented transverse to flow and

having an upglacier dip. The field description also noted that the structure consists of

poorly defined anastomosing layers. These could result from the variable orientation and

dip of crack planes, as for SL10.

6. Discussion

6.1. Observed Post-surge Structural Attributes

6.1.1. Structural Sequence

Four phases of planar structure (S0–S4) and two phases of folding (F1, F3) were identified

from three-dimensional analysis of the surface of the glacier and the ice-marginal cliff.

They represent a sequence of structure-forming events that affect a “parcel” of ice as

it moves through the glacier, although not all parts of the glacier are affected by all

of the structures. In particular, the thrusts (S3) and recumbent folds (F3) affect only
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the basal and intermediate depths within the glacier. A similar range of structures,

though not necessarily in the same order of formation, has been recognized in surge-type

polythermal glaciers in Svalbard, such as Bakaninbreen [Hambrey et al., 1996] and in

temperate Variegated Glacier in Alaska [Lawson, 1994].

6.1.2. Quiescent-phase Structural Development

Observations of the structure of Trapridge Glacier in 2006 allow discrimination of surge

and non-surge attributes in a sequential context, and help to define how the surge front

propagated through the glacier. Overall, the quiescent phase structures are longitudinal

foliation and limited folding, which are evident at the glacier surface, but they are less

obvious than structures that are attributed to surging. Within the main body of the

glacier, especially where associated with the medial moraine, the foliation was probably

formed where flow convergence took place in the upper reaches of the glacier, which in

modeling we refer to as the “pinched model” [Clarke & Hambrey , 2019]. Because of the

plug-flow nature of flow during the surge (evident in Figure 2), it is likely that foliation only

formed during quiescent phase flow, except at the margins where strong shear prevailed

during the surge. Flow-convergence results in large total strains, as a result of which

the strain-ellipsoid, in disk-like form, becomes flattened in the plane of foliation. In

other glaciers, e.g., Variegated Glacier, Alaska [Lawson, 1994] and Kongsvegen, Svalbard

[Glasser et al., 1998], S1 has also been inferred to represent quiescent-phase deformation.

Both these glaciers surge and the presence of the S1 foliation is consistent with our model

results that suggest that steady flow is not a requirement for the development of this

foliation. An additional modification of foliation is localized distortion away from true

flow-parallel configuration. Fischer & Clarke [1997a] observed that during the slow surge
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of Trapridge Glacier, the glacier experienced stick–slip sliding behaviour as water pressure

at the glacier bed varied. The development of “sticky spots” could explain why the

foliation becomes distorted.

The hypothesis that there is a close correspondence between the plane of flattening of

the strain ellipsoid and the plane of foliation is supported by the agreement between the

observed and modeled stereoplots of the S1 foliation (Figures 17a and 17c). Our associ-

ation of the S1 foliation with the quiescent phase is consistent with structure modeling

results. For the Trapridge Glacier reference model, cumulative strain at 43 of 118 (36.4%)

surface sites (Figure 17d favors formation of the S1 foliation. For the same observation

sites and a non-surging variant of the same model the percentage of favorable sites in-

creases to 41.6%. The simplified models in Clarke & Hambrey (2019) show a similar

tendency.

6.1.3. Surge Front Propagation and Associated Structures

The latest surge phase on Trapridge Glacier is exceptional for its slowness [Frappé-

Sénéclauze & Clarke, 2007]. It is instructive to compare the structural attributes of the

surge front with those of other glaciers. Clarke & Blake [1991] developed a number of

surge-front models that showed various structural scenarios of propagation of the bulge,

including recumbent folding of the glacier substrate, thrusting with debris, and the de-

velopment of blind thrusts. Folding was discounted, and so was thrusting to the surface,

as no surface manifestation of structures was apparent. The preferred mechanism was

blind thrusting, whereby groups of thrusts were imbricated. These faults terminated at

an edge-dislocation beyond which displacement was accommodated by creep deformation.

The developing blind thrusts were indicated by growth on an internal sediment horizon

c©2019 American Geophysical Union. All Rights Reserved.



comprising basal debris between 1980 and 1988. Survey markers showed that propaga-

tion of the bulge was achieved by activation of the stagnant frontal apron. Longitudinal

compression down-slope of the bulge caused the ice surface to rise, allowing the bulge

profile to propagate in a continuous manner. The stagnant apron was incorporated into

the bulge rather than overridden. Remnants of ice from the 1940s surge lasted into the

mid-1980s and, for this surge, there was strong evidence of overriding.

Propagation of the surge front to the snout created a near-vertical cliff, which allowed

the deep internal structure to be revealed for the first time. This enabled further de-

velopment of a conceptual structural model to illustrate the propagation of the bulge to

the snout (Figure 23). The original concept of blind thrusting is proved correct, but was

accompanied by folding of basal ice containing subglacially derived debris (till). Thrusts

propagate forwards from a basal décollement that is inferred to be the contact between

the glacier and its bed of till. As these develop, downglacier-verging open folds, commonly

laden with basal debris, grow into recumbent folds whose lower limbs may be sheared off

by the developing thrusts. It has been suggested that the thrusts developed at the tran-

sition from wet-based ice to cold ice [Clarke & Blake, 1991], a mechanism also suggested

for polythermal glaciers in Svalbard [Hambrey et al., 1999]. Since an abundance of basally

derived debris is associated with these thrusts, the initial entrainment of debris must be

achieved by regelation and accretion of basal ice. This process probably occurred close to

the thermal boundary between warm and cold-based ice. Once the stagnant ice apron had

been over-run, and the surge front reached the snout, the topographic bulge steepened to

a cliff, displaying all these structures clearly.
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The key difference from the Svalbard glaciers is in the style of thrusting. All these

other glaciers have prominent thrusts on their surface, which dip at moderate to high

angles upglacier. In an example of investigations made during an actual surge, that of

Bakaninbreen, was accompanied by movement through the glacier of a wall of fractured

ice. This wall collapsed onto the stagnant ice in front, but also saw the development of a

fore-bulge [Murray & Booth, 2010]. Following cessation of the surge, the cliff reduced to

a ramp, displaying anastomosing thrusts, some of which showed signs of lubrication by

abundant meltwater. This particular surge, however, stopped short of the snout. More

recently the surge of partially tidewater Comfortlessbreen did not produce a prominent

bulge, but saw advance of a heavily crevassed snout accompanied by high-angle thrusting

and debris-entrainment in the terrestrial zone, and proglacial folding of marine sediments

in the marine zone [King et al., 2015]. In contrast, the slow surge of Trapridge Glacier

produced thrusts which propagated from a bed that is inclined at approximately 7◦, with

an initial dip downglacier at an angle somewhat less than that of the bed. These thrusts

barely attain an upglacier attitude when they intersect the ice cliff so that few, if any, of

these thrusts intersected the glacier surface.

The fold model (Figure 18) contributes little to this discussion, in part because the

modeled region and the sites where folds and thrusts were observed do not coincide. The

larger problem is that the ice dynamics model lacks the resolution and the physics to

represent folds and thrusts. Comparison of the fold intensity diagrams for surging and

non-surging models of Trapridge Glacier, although hardly definitive, do not support the

idea that surging glaciers have a greater tendency to construct folds than non-surging

glaciers. Whatever the truth, it is likely that folds formed at the base of a glacier are
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more readily observed in surging glaciers, in part because of the steep exposed ice faces

that result from surges.

6.1.4. Crevasse Formation Following Passage of Surge Front

Crevasses and their traces provide evidence of the flow history of a glacier [Herzfeld et

al., 2004; Colgan et al., 2016]. In non-surging glaciers, the development and distribution

of brittle structures is controlled by mass balance and bed morphology [Herbst et al.,

2006]. In surging glaciers, changes in bed conditions lead to accelerated flow and crevasse

development. During most glacier surges, following passage of the surge front, the glacier

surface becomes totally crevassed, with many intersecting sets. Typical examples are

Variegated Glacier, Alaska [Lawson, 1996] and Monacobreen, Svalbard [Murray et al.,

2003], which were both almost totally crevassed during their surges. In contrast, the slow

surge of Trapridge Glacier revealed both crevassed and non-crevassed areas. However,

crevasse traces are ubiquitous and much denser than on non-surging glaciers (up to 3

fractures per m2; Figures 9 and 10), although no systematic measurements are available

elsewhere for comparison. Most of these structures indicate that tensile strain-rates did

not reach the threshold for crevasse initiation.

Crevasse traces, analysed in detail in key locations, did not yield consistent orientations

in relation to the flow direction, as defined by the medial moraine. On examining fracture

orientations along the flow-centerline we found one case where the majority of crevasse

traces and crevasses had formed normal to the flow direction, as expected, but in other

cases the orientations are bimodal or form broad girdles, when plotted on stereographic

projections. Similarly, the surface mounds, which are thought to reflect protuberances in

the glacier bed, had variably oriented crevasses, although generally at a higher density.
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Individual sets of crevasse traces did not survive downglacier for more than a few hundred

meters, suggesting that they only extended to a shallow depth when formed. This is in

contrast to crevasse traces in non-surge-type glaciers, where they may extend downglacier

for several kilometers, and even to the bed, as exemplified by Blue Glacier, Washington

[Allen et al., 1960], White Glacier, Nunavut, Canada [Hambrey & Müller , 1978] and

Griesgletscher, Switzerland [Hambrey and Milnes , 1977].

The inconsistent nature of crevasse orientations is probably a reflection of a bed that

is heterogeneous in terms of irregular topography, sedimentary facies composition, and

hydraulic properties. The identification of stick-slip motion and presence of sticky spots

that are temporally and spatially variable [Fischer & Clarke, 1997a] reinforces this view;

such areas can lead to rotation of surface structures such as crevasse traces, as well as

foliation.

7. Conclusions

The key observationally-based conclusions from this study are: (1) Trapridge Glacier

has experienced two surges in the last 70 years, one in the 1940s that appears to have

been a normal rapid surge, and a second slow surge that ended in 2005. (2) The earlier

surge resulted in a totally crevassed glacier tongue that on melting back revealed dead

ice with strong longitudinal foliation. (3) Subsequent quiescent-phase flow produced a

near-pervasive longitudinal foliation in the newly active tongue. (4) The new phase of

surging was accompanied by the development of a prominent bulge, which showed no

surface manifestation of thrusting or recumbent folding; local distortion of the foliation

was also evident. (5) Once the surge front reached the snout, the deeper internal structure

was revealed. Thrusting indeed was evident, but thrusts were blind and few intersected
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the glacier surface, although they became exposed in the ice cliff. (6) Recumbent isoclinal

and similar folding is associated with thrusting, with the lower limbs of the folds in places

showing shearing off by a thrust. (7) Folding and thrusting provide an effective way for

subglacial debris and basal ice to be elevated to a high englacial position in the glacier. (8)

Passage of the surge front resulted in heavy fracturing behind, both in terms of shallow

open crevasses and crevasse traces, although this was not on the scale of the earlier surge,

or as evidenced by other glacier surges. (9) Fractures have a predominantly transverse

orientation, followed by diagonal and longitudinal. Fracture density attains a maximum

of 3 m−2 in the areas investigated.

There seems little systematic preferred orientation of fractures in relation to flow di-

rection. Observation on supraglacial ice mounds suggests that uneven bed morphology

and variable stick–slip motion are the main influences on crevasse and crevasse trace

orientation, combined with extending flow behind the surge front.

The key model-based conclusions from this study are: (1) Medial moraine patterns

can be readily simulated using conventional particle tracking. For Trapridge Glacier,

observed and simulated patterns are uncomplicated so that agreement between observed

and modeled patterns is not a good test of model skill. (2) The S0 stratification can

be modeled using the assumption of isochronous layering and a semi-Lagrangian tracer

method. (3) The S1 longitudinal foliation appears to be associated with the orientation

and flattening of strain ellipsoids and can be modeled by calculating ellipsoid parameters

from the deformation gradient tensor Fjk. The agreement between the observed and

modeled foliation is good but the glaciological processes that link ice strain with foliation

development require further study. (4) Modeling results are consistent with the suggestion
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that the S2 transverse foliation results from compression and rotation of transverse near-

vertical cracks. (5) At the scale of the simulation model, folding is a sub-grid process.

We therefore introduced a scalar “fold propensity index” based on a scalar invariant of

the gradient of the deformation gradient tensor. The idea of representing complicated

deformation as a scalar parameter is new and merits additional study. (6) Our modeling

represents a first attempt to simulate the orientation distribution of crevasse traces. The

agreement between observations and simulations was unsatisfactory, most likely because

of oversimplifications in the model. (7) Crack density simulations yielded an explanation

for the counter-intuitive observation that the density of surface cracking has a decreasing

trend in the downglacier direction.

To summarize, the greatest modeling successes were associated with efforts to simulate

kinematic structures that depend on the flow velocity field and its derivatives. Efforts to

simulate glacier folds and the density and orientation of crevasse traces, structures that in-

volve processes that are not considered in current ice dynamics models, were less successful

and highlight a direction for future effort. Nested models would allow selective high reso-

lution of the processes that control folding and thrusting. Likewise, hybrid models such as

that of Gong et al. (2018), which combines a finite-element full-Stokes thermomechanical

flow model with a discrete-element treatment of ice fracture, hold promise.

This study has demonstrated that structural glaciology can provide insight concerning

the manner by which surges propagate through a glacier. It can also provide, through

analysis of basally derived debris uplifted to an englacial position, evidence of the bed

condition and its heterogeneity. By comparison with other glaciers, it is evident that a
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wide range of glaciotectonic processes are at work, leading to a range of structural styles,

with that of Trapridge Glacier being particularly distinctive.
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Table 1. Summary of structures in Trapridge Glacier in order of progressive downglacier

development, using standard structural geological notation of S for planar structures and F for

fold axes.

Notation Description Structural interpretation

S0 Continuous, wavy, weakly developed gently
dipping layers of coarse bubbly ice and thin
clear ice, best exposed in crevasse walls, es-
pecially in upper ablation area

Stratification

S1 Longitudinally oriented, near-vertical inter-
calating layers of bubble-rich and bubble-
poor ice, commonly defined by bubble elon-
gation; variable strength across the width of
the glacier tongue

Longitudinal foliation re-
sulting from simple shear

S2 Limited distribution in south flow unit; weak
anastomosing layers dipping moderately (30-
50◦) up glacier

Transverse foliation derived
from crevasse traces

S3 Low-angle fractures in marginal cliff, extend-
ing for several tens of meters, commonly as-
sociated with basal debris

Thrusts connecting to
glacier bed

S4 Clearly defined fractures and veins from
< 1 cm to > 1 m wide, comprising clear ice
crystals elongated normal to trace

Crevasse traces

F1 Low-amplitude dm-scale semi-continuous
folds of layers of coarse bubbly ice (domi-
nant) and coarse clear ice; higher amplitude
similar-style folding with axial plane foliation
in places; fold axes dip gently upglacier and
are parallel to flow

Folded stratification

F3 Prominent meter-scale folding of debris of
basal origin and coarse bubbly ice into isocli-
nal and similar-style forms; lower limbs com-
monly sheared off by S4 structures; axes hor-
izontal and sub-parallel to snout

Recumbent folds associated
with thrusts
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Table 2. Observed and modeled eigenproperties of S1 foliation at lower Trapridge Glacier

sites for 2006.6

Site k λk Nk

Nx Ny Nz

Observed 1 0.890 −0.064 −0.995 0.081
2 0.087 −0.997 0.059 −0.059
3 0.023 −0.054 0.084 0.995

Modeled 1 0.742 −0.123 0.990 −0.073
2 0.187 0.045 0.079 0.996
3 0.071 0.991 0.119 −0.055

Edited 1 0.896 −0.159 0.987 −0.028
2 0.062 −0.987 −0.160 −0.031
3 0.042 −0.035 0.022 0.999
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Table 3. Modeled strain ellipsoids for Trapridge Glacier reference (surging) model and sites

at 2006.6

Site Deposition k λVk NV
k Axis ratios Dip

date NV
x NV

y NV
z κ1:2 κ2:3 δ3

FC1 1986.4 1 1.397 0.257 −0.278 0.926 1.10 2.24 86.7
2 1.267 0.508 −0.776 −0.374
3 0.565 0.822 0.566 −0.058

FC2 1967.9 1 3.738 0.990 0.028 −0.135 3.88 3.47 87.0
2 0.964 0.137 −0.048 0.989
3 0.278 0.021 −0.998 −0.052

FC3 1956.8 1 4.004 0.922 0.008 0.387 1.45 30.67 89.5
2 2.768 −0.387 −0.012 0.922
3 0.090 0.012 −1.000 −0.008

FC4 1924.1 1 4.006 −0.915 −0.256 −0.311 2.81 8.15 89.5
2 1.426 −0.296 −0.093 0.950
3 0.175 −0.272 0.962 0.010

FC5 1899.0 1 7.026 0.962 0.272 −0.010 6.65 7.85 84.1
2 1.057 0.037 −0.097 0.995
3 0.135 0.270 −0.957 −0.104

FC6 1865.3 1 9.608 −0.970 −0.231 0.079 16.40 3.30 83.2
2 0.586 0.049 0.134 0.990
3 0.178 0.239 −0.964 0.119

FC7 1836.2 1 13.377 −0.915 0.400 −0.044 29.47 2.76 44.8
2 0.454 −0.313 −0.639 0.703
3 0.165 0.254 0.657 0.710

c©2019 American Geophysical Union. All Rights Reserved.



Table 3. Continued: Modeled strain ellipsoids for Trapridge Glacier reference (surging) model

and sites at 2006.6

Site Deposition k λVk NV
k Axis ratios Dip

date NV
x NV

y NV
z κ1:2 κ2:3 δ3

M1 1910.7 1 6.939 −0.974 0.146 −0.175 14.84 1.52 49.7
2 0.468 −0.227 −0.630 0.742
3 0.308 −0.002 0.762 0.647

M2 1883.4 1 8.819 0.989 0.148 0.013 19.61 1.78 13.2
2 0.450 0.022 −0.228 0.973
3 0.252 0.147 −0.962 −0.229

M3 1916.8 1 6.395 0.819 0.148 0.555 6.98 5.37 83.3
3 0.171 0.099 −0.988 0.117

M4 1934.9 1 3.376 −0.845 −0.118 −0.522 2.36 6.90 89.2
2 1.429 −0.514 −0.090 0.853
3 0.207 −0.148 0.989 0.015
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Figure 1. Location map for Trapridge Glacier study area in Yukon, Canada. (a) Study

area near Alaska–Yukon border. (b) Map of Trapridge Glacier based on 1981 vertical aerial

photography (e.g., Figure 2d). In the Zone 7 NAD27 UTM coordinate system used for this map

the southwest corner (2000E, 6000N) corresponds to the UTM coordinates (532000E, 6786000N).

(c) Map of measurement sites on lower Trapridge Glacier, with FC samples representing flow

centerline and M the ice-surface mounds. The green-dashed outline gives the map limits of the

computer model and the red-dashed outline the map limits of the site map (c). The model

domain and the site map use the same coordinate system and the (0E,0N) origin of the model

domain is at UTM (532105E, 6786145N).
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Figure 2. Series of aerial photographs of Trapridge Glacier over a 30 year period showing the 1940s
surge followed by subsequent stagnation, increasing debris cover, and the progressive development of
a new surge front (National Air Photo Library of Natural Resources Canada). (a) Post-1940s heavily
crevassed and advanced surge condition (1951), (b) 1972. (c) 1977. (d) 1981.
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Figure 3. Trapridge Glacier tongue viewed from the northeast in August 2006. (a) General

view with Mount Wood in the background and the terminal cliff that developed as the surge front

reached the snout in the preceding year. (b) Telephotograph from the same location showing

terminal cliff detail and glacier surface mounds, related to elevated areas of the glacier bed.

c©2019 American Geophysical Union. All Rights Reserved.



Figure 4. Primary stratification and foliation in Trapridge Glacier. (a) Well-developed near-

horizontal stratification (S0) exposed in the steep terminus of the northern arm just below the

accumulation area. (b) Close-up of longitudinal foliation (S1), intersected by crevasse traces (S3)

just below the equilibrium line in the northern flow unit.
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Figure 5. Equal-area, lower hemisphere projections of poles to longitudinal foliation S1 in

the tongue of Trapridge Glacier, illustrating the relationship with average flow direction denoted

by the medial moraine. Arrows (roughly eastward-pointing) indicate the ice flow direction.

Eigenvalues and eigenvectors calculated from points in the scatterplot are given in Table 2.
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Figure 6. Deformation in the basal zone of Trapridge Glacier, where the surge front coincides

with the glacier snout. (a) Detail of 2-m amplitude similar-style recumbent fold, comprising

glacier ice and debris-rich basal ice; decimeter-scale parasitic folds are evident on the limbs of

the main fold. (b) Complex recumbent isoclinal folding longitudinal foliation (F4) in transverse

section near true right margin of glacier; note that the lower limb of the main fold has its lower

limb sheared off by a thrust (S4); section about 5 m high. (c) Typical geometry of low-angle

thrusts (S4) with basal debris in mid-snout; note how they propagate from a lower thrust, and

that some are blind; section about 5 m high.
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Figure 7. Fracture characteristics of Trapridge Glacier. (a) Narrow open and partly ablated

longitudinal crevasse zone near snout of glacier, looking upglacier. (b) Glacier surface mound

intersected by numerous short crevasse traces (predominantly transverse); downglacier to left.

(c) Transverse and diagonal crevasse traces (S3), intersecting longitudinal foliation (S1); com-

pass/clinometer for scale. (d) Cleaned and washed ice surface exposing internal structure of

crevasse traces, including columnar crystal growth of coarse clear ice joining at a central suture,

and cutting coarse bubbly glacier ice.
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Figure 8. Crevasse trace measurements for FC (flow centerline) and M (mound) sites on

Trapridge Glacier. Each panel presents measurement results in the form of a Schmidt diagram

(equal-area, lower hemisphere projections of poles of crevasse traces), a contoured density plot of

the same data, and a rose diagram of the dip directions of the crevasse traces. The observation

year is 2006.6.
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Figure 9. Observed crack count for flow centerline (FC) and surface mound (M) sites on

Trapridge Glacier. For each site the sampled area is 50 m2 so crack density is simply the count

divided by this area. The observation year is 2006.6.
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Figure 10. Observed crack count along flow centerline (FC) of Trapridge Glacier. For each

site the sampled area is 50 m2 so crack density is simply the count divided by this area. The

observation year is 2006.6.
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Figure 11. Reference map for Trapridge Glacier model with topographic and subglacial

bed contours. The origin of the NAD27 UTM coordinate system (southwest corner point) is at

(532105E, 6786145N). The glacier outline (blue) is calculated from the glacier dynamics model

for the observation year 2006.6. The prescribed ELA for the ice dynamics model is indicated by

a green line. Measurement sites are labeled FC1, FC2, etc. Pink shading indicates the assumed

limits of the fast-sliding zone during surges. Solid circles in red, black and green near the

western boundary of the fast-sliding zone indicate points at which morainal debris is introduced

for numerical modeling of the medial moraine pattern. The profile line along which fold intensity

is simulated is plotted as a brown-dashed line terminated by brown-filled circles.
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Figure 12. Time series for modeled deformational power density and rate of area change

through a 50-year surge cycle. The pink background isolates the 13-year active phase of the surge

during which the power density (black curve) and rate of change of area (blue curve) increase

dramatically. Yellow circular markers on the power density plot indicate snapshot times for the

sequence of maps in Figure 13. The time-averaged power density for the surging glacier model

(dashed red line) and power density for a non-surging model of the same glacier (green-dashed

line) differ only slightly.
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Figure 13. Maps of the vertically-integrated deformational power density at various times in

the surge cycle. The 1985 snapshot corresponds to the surge onset; 1986, 1987, 1988 correspond

to the 3-year accelerating phase of the surge; 1990 and 1995 to the contuing surge. The 2-year

decelerating phase from 1996–1998 is not shown; post-surge snapshots for 2000 and 2005 complete

the cycle.
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Figure 14. Observed and simulated medial moraine. (a) Map of lower part of Trapridge

Glacier showing the 2006 ice margin as determined by Etienne Berthier, the sampling sites,

and a sketch map of the medial moraine position in July 2006. (b) Simulated glacier extent

and medial moraine position for 2006.6. Locations of the debris input points for the simulated

moraine tracks (red, black, and green) are indicated by red, black, and green markers in Figure

11.
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Figure 15. Simulated medial moraines for Trapridge Glacier model at various times in the 50-year
surge cycle. N denotes any integer. (a) Year 0 (1985±50N). (b) Year 10 (1995±50N). (c) Year 20
(2005±50N). (d) Year 30 (1965±50N). (e) Year 40 (1975±50N). Locations of the debris input point for
each of the three moraine stripes (red, black, and green) are indicated by corresponding markers in the
glacier accumulation area.
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Figure 16. Map of simulated S0 stratification for Trapridge Glacier model. The stratification is

assumed to be associated with depositional layering so that each deposition surface is isochronal.

The contour interval is 10 years. Working from the top-down, thick contour lines correspond

to 2000, 1950, 1900, 1850, and 1800. The observation year is 2006.6 (year 21.6 of the modeled

50-year surge cycle).
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Figure 17. Comparison of measured and modeled stereographic projections of the S1 data. (a)
Measured. (b) Modeled. (c) Model using edited data to eliminate points that are unlikely to favor
development of the S1 foliation. The modeled points are color coded as follows: yellow fill indicates
points associated with a low-angle foliation plane (less than 30◦ dip), green if the axis ratio for the strain
ellipsoid is unfavorably low (κ2:3 < 5), or red if both failure criteria are experienced. Black points are
acceptable from both perspectives. (d) Map of measurements sites for modeled foliation. Black circles
indicate the 15 locations where the model predicts S1 foliations would be developed.
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Figure 18. Simulated longitudinal profile of folded ice for Trapridge Glacier models. The

contoured variable is log10Q2 where Q2 is a fold index. Observation year is 2006.6. (a) Reference

model. (b) Non-surging model.
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Figure 19. Comparison of measured and modeled crevasse trace data at FC and M measure-

ment sites for Trapridge Glacier. Each panel shows simulation results in the form of a Schmidt

diagram (equal-area, lower hemisphere projections of poles of crevasse traces), a contoured den-

sity plot of the same data, and a rose diagram of the dip directions of the crevasse traces. Arrows

(roughly eastward-pointing) indicate the inferred or modeled ice flow direction. Observation year

is 2006.6 (year 21.6 of modeled 50-year surge cycle).
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Figure 20. Observed and simulated fracture (crevasse trace) counts for flow centerline (FC)

and surface mound (M) sites of Trapridge Glacier. Observation year is 2006.6 (year 21.6 of the

50-year surge cycle). (a) Observed. (b) Trapridge reference model. (c) Trapridge non-surging

model. For the non-surging model, site FC7 was off-glacier at 2006.6.
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Figure 21. Observed and simulated crack counts along flow centerline (FC) of Trapridge

Glacier. Observation year is 2006.6 (year 21.6 of the 50-year surge cycle). (a) Observed. (b)

Trapridge reference model. (c) Trapridge non-surging model. Note that for the non-surging

model site FC7 was off-glacier.
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Figure 22. Simulated orientation of surface cracks at centerline sites (but not field measure-

ment sites) near the terminus of Trapridge Glacier. Observation year is 2006.6 (year 21.6 of the

50-year surge cycle). (a) Map showing site locations. (b) Schmidt diagrams (equal-area, lower

hemisphere projections of poles of crevasse traces) and contoured point density plots for the same

simulation results.
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Figure 23. Conceptual model of structural evolution, focusing on recumbent folding and

thrusting during (a) the slow surge, and (b) surge termination when surge front reaches the

snout.
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