142 research outputs found

    Effects of Symmetry Breaking on the Strong and Electroweak Interactions of the Vector Nonet

    Get PDF
    Starting from a chiral invariant and quark line rule conserving Lagrangian of pseudoscalar and vector nonets we introduce first and second order symmetry breaking as well as quark line rule violating terms and fit the parameters, at tree level, to many strong and electroweak processes. A number of predictions are made. The electroweak interactions are included in a manifestly gauge invariant manner. The resulting symmetry breaking pattern is discussed in detail. Specifically, for the ``strong'' interactions, we study all the vector meson masses and V -> \phi \phi decays, including isotopic spin violations. In the electroweak sector we study the { rho^0 , omega , phi } -> e^+e^- decays, { pi^+ , K^+ , K^0 } ``charge radii'', K_{l3} ``slope factor'' and the overall e^+e^- -> pi^+ pi^- process. It is hoped that the resulting model may be useful as a reasonable description of low energy physics in the range up to about 1 GeV.Comment: 43 pages (LaTeX), 5 PostScript figures are included as uuencoded-compressed-tar file at the en

    Data acquisition process for an intelligent decision support in gynecology and obstetrics emergency triage

    Get PDF
    Manchester Triage System is a reliable system of triage in the emergency department of a hospital. This system when applied to a specific patients’ condition such the pregnancy has several limitations. To overcome those limitations an alternative triage IDSS was developed in the MJD. In this approach the knowledge was obtained directly from the doctors’ empirical and scientific experience to make the first version of decision models. Due to the particular gynecological and/or obstetrics requests other characteristics had been developed, namely a system that can increase patient safety for women in need of immediate care and help low-risk women avoid high-risk care, maximizing the use of resources. This paper presents the arrival flowchart, the associated decisions and the knowledge acquisition cycle. Results showed that this new approach enhances the efficiency and the safety through the appropriate use of resources and by assisting the right patient in the right place.The work of Filipe Portela was supported by the grant SFRH/BD/70156/2010 from FC

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    The supersymmetric prediction for the muon transverse polarization in the K+π0μ+νμK^+ \leftarrow \pi^0 \mu^+ \nu_\mu decay

    Full text link
    The muon transverse polarization in the K+π0μ+νμK^+ \leftarrow \pi^0 \mu^+ \nu_\mu decay will be measured at the 10410^{-4} level in forthcoming experiments. We compare the phenomenological perspectives with the theoretical predictions in supersymmetric extensions of the standard model. In the minimal extension, CP-violating phases lead to a non-zero transverse polarization, that however is too small to account for a positive experimental signal. The problems that one encounters when departing from minimal assumptions are discussed. An observable effect is possible if the hypothesis of R-parity conservation is relaxed, but only at the price of assuming a very special pattern for the R-parity breaking couplings.Comment: latex, 18 pages, 1 latex figur

    Experimental progress in positronium laser physics

    Get PDF

    Development of the male reproductive system in Callinectes ornatus Ordway, 1863 (Brachyura: Portunidae)

    Get PDF
    This study describes the histology and histochemistry of the male reproductive system in Callinectes ornatus, comparing juvenile and adult developmental stages. We also analyzed changes in the gonadosomatic (GSI) and hepatosomatic (HSI) indices, and the weights of the testis and vas deferens during the development. The results showed that all stages, beginning with the juvenile (JUV), through developing (DEV) and mature (MAT) adult males of C. ornatus produce sperm and spermatophores. During development, testicular lobes showed the same characteristics of production and release of sperm into the seminiferous duct. The vas deferens showed little histological and histochemical change in the epithelium in juvenile and adult males. The differences consisted of the larger amount of secretion in MAT males compared to JUV and DEV ones. The chemical composition of the seminal fluid was similar, but MAT males produced a more homogeneous secretion. Morphological and physiological maturation are not synchronized in C. ornatus, since JUV males produced spermatophores similar to those in DEV and MAT males. However, these JUV are not yet able to reproduce, since they still have the abdomen attached to the cephalothoracic sternum. The increase of the GSI during development was significant for MAT males, and is related to the production of sufficient volume of seminal fluid to form the sperm plug in the female seminal receptacle. The HSI decreased from DEV to MAT adult stages, indicating that reserves from the hepatopancreas are used to develop the reproductive system after the pubertal molt.Universidade Estadual PaulistaUniv. Estadual Paulista IEAMar CAUNESPUniversidade Estadual PaulistaUniv. Estadual Paulista IEAMar CAUNES

    Global Carbon Budget 2021

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data-products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the first time, an approach is shown to reconcile the difference in our ELUC estimate with the one from national greenhouse gases inventories, supporting the assessment of collective countries’ climate progress. For the year 2020, EFOS declined by 5.4 % relative to 2019, with fossil emissions at 9.5 ± 0.5 GtC yr−1 (9.3 ± 0.5 GtC yr−1 when the cement carbonation sink is included), ELUC was 0.9 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission of 10.2 ± 0.8 GtC yr−1 (37.4 ± 2.9 GtCO2). Also, for 2020, GATM was 5.0 ± 0.2 GtC yr−1 (2.4 ± 0.1 ppm yr−1), SOCEAN was 3.0 ± 0.4 GtC yr−1 and SLAND was 2.9 ± 1 GtC yr−1, with a BIM of −0.8 GtC yr−1. The global atmospheric CO2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021, suggest a rebound in EFOS relative to 2020 of +4.9 % (4.1 % to 5.7 %) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2020, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra- tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2020; Friedlingstein et al., 2019; Le Quéré et al., 2018b, 2018a, 2016, 2015b, 2015a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 2021)

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
    corecore