155 research outputs found
Epidemiology of post-neonatal bacterial meningitis in Cape Town children
CITATION: Hussey, G. 1997. Epidemiology of post-neonatal bacterial meningitis in Cape Town children. South African Medical Journal, 87(1):51-56.The original publication is available at http://www.samj.org.zaBacterial meningitis is a major cause of childhood morbidity and mortality in South Africa. However, comprehensive regional or national epidemiological data, essential for rational public health interventions, are lacking. The purpose of this 1-year prospective study, from 1 August 1991 to 31 July 1992, was to define the magnitude of the problem of childhood bacterial meningitis in Cape Town. The study group consisted of all children, aged > 1 month to < 74 years, who presented with proven bacterial meningitis at all the hospitals in the Cape Town metropolitan area. During the year 201 cases were identified: 101 (50.2%) were due to Neisseria meningitidis, 74 (36.8%) were due to Haemophilus influenzae and 26 (12.9%) were due to Streptococcus pneumoniae. The overall incidence rate (95% confidence interval) for children less than 14 years, 5 years and 1 year was 34 (30 - 40), 76 (65 - 88) and 257 (213 - 309) per 100 000 children, respectively. The rate was highest in black infants, 416 (316 - 545)/100 000. This was 2 times greater than the rate in coloured infants and about 4.5 times greater than the rate in white infants. The median age of all the children was 10 months. The ages of children with haemophilus and pneumococcal meningitis were similar, 9 and 7.5 months respectively (P = 0.43), while children with meningococcal meningitis were significantly cider (22 months) than the others (P < 0.01). The overall case fatality rate was 5%, and 12.9% of survivors had significant neurological sequelae (disability) on discharge.Publisher’s versio
Nucleosome positioning and histone modifications define relationships between regulatory elements and nearby gene expression in breast epithelial cells
Abstract\ud
\ud
Background\ud
The precise nature of how cell type specific chromatin structures at enhancer sites affect gene expression is largely unknown. Here we identified cell type specific enhancers coupled with gene expression in two different types of breast epithelial cells, HMEC (normal breast epithelial cells) and MDAMB231 (triple negative breast cancer cell line).\ud
\ud
\ud
Results\ud
Enhancers were defined by modified neighboring histones [using chromatin immunoprecipitation followed by sequencing (ChIP-seq)] and nucleosome depletion [using formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-seq)]. Histone modifications at enhancers were related to the expression levels of nearby genes up to 750 kb away. These expression levels were correlated with enhancer status (poised or active), defined by surrounding histone marks. Furthermore, about fifty percent of poised and active enhancers contained nucleosome-depleted regions. We also identified response element motifs enriched at these enhancer sites that revealed key transcription factors (e.g. TP63) likely involved in regulating breast epithelial enhancer-mediated gene expression. By utilizing expression data, potential target genes of more than 600 active enhancers were identified. These genes were involved in proteolysis, epidermis development, cell adhesion, mitosis, cell cycle, and DNA replication.\ud
\ud
\ud
Conclusions\ud
These findings facilitate the understanding of epigenetic regulation specifically, such as the relationships between regulatory elements and gene expression and generally, how breast epithelial cellular phenotypes are determined by cell type specific enhancers.National Institutes of Health [R01 CA136924 to GAC, T32CA009320 to HN]Genetic Associations and Mechanisms in Oncology (GAME-ON
Principles for the post-GWAS functional characterisation of risk loci
Several challenges lie ahead in assigning functionality to susceptibility SNPs. For example, most effect sizes are small relative to effects seen in monogenic diseases, with per allele odds ratios usually ranging from 1.15 to 1.3. It is unclear whether current molecular biology methods have enough resolution to differentiate such small effects. Our objective here is therefore to provide a set of recommendations to optimize the allocation of effort and resources in order maximize the chances of elucidating the functional contribution of specific loci to the disease phenotype. It has been estimated that 88% of currently identified disease-associated SNP are intronic or intergenic. Thus, in this paper we will focus our attention on the analysis of non-coding variants and outline a hierarchical approach for post-GWAS functional studies
Wind tunnel testing of a high aspect ratio wing model
There is much current interest in the development of High Aspect Ratio Wing (HARW) designs for improved aircraft performance. However, there are a lack of relevant data sets available to validate aeroelastic modelling approaches for highly flexible wings. The design and manufacture of a highly flexible 2.4m semi-span wing is described. A series of low speed wind tunnel tests were performed to generate displacement, acceleration, strain gauge, aerodynamic pressure and six component balance measurements for a range of airspeeds and wing root angles of attack. Numerous static and dynamic measurements were made. Preliminary results are shown for the static and dynamic, structural and aerodynamic behaviour over a range of different airspeeds and wing root angles of attack.Peer ReviewedPostprint (published version
SIRT1 regulates Mxd1 during malignant melanoma progression
In a murine melanoma model, malignant transformation promoted by a sustained stress condition was causally related to increased levels of reactive oxygen species resulting in DNA damage and massive epigenetic alterations. Since the chromatin modifier Sirtuin-1 (SIRT1) is a protein attracted to double-stranded DNA break (DSB) sites and can recruit other components of the epigenetic machinery, we aimed to define the role of SIRT1 in melanomagenesis through our melanoma model. The DNA damage marker, gamma H2AX was found increased in melanocytes after 24 hours of deadhesion, accompanied by increased SIRT1 expression and decreased levels of its target, H4K16ac. Moreover, SIRT1 started to be associated to DNMT3B during the stress condition, and this complex was maintained along malignant progression. Mxd1 was identified by ChIP-seq among the DNA sequences differentially associated with SIRT1 during deadhesion and was shown to be a common target of both, SIRT1 and DNMT3B. In addition, Mxd1 was found downregulated from pre-malignant melanocytes to metastatic melanoma cells. Treatment with DNMT inhibitor 5AzaCdR reversed the Mxd1 expression. Sirt1 stable silencing increased Mxd1 mRNA expression and led to down-regulation of MYC targets, such as Cdkn1a, Bcl2 and Psen2, whose upregulation is associated with human melanoma aggressiveness and poor prognosis. We demonstrated a novel role of the stress responsive protein SIRT1 in malignant transformation of melanocytes associated with deadhesion. Mxd1 was identified as a new SIRT1 target gene. SIRT1 promoted Mxd1 silencing, which led to increased activity of MYC oncogene contributing to melanoma progression.FAPESP [2011/0166-38, 2011/12306-1, 2014/13663-0, 2015/07925-5, 2016/06488-3]DAAD [PKZ A/12/79134]FAPESP/BAYLAT [2012/51300-7]Univ Fed Sao Paulo UNIFESP, Dept Pharmacol, Ontogeny & Epigenet Lab, Sao Paulo, SP, BrazilUniv Sao Paulo, Ribeirao Preto Med Sch, Dept Genet, Ribeirao Preto, SP, BrazilFriedrich Alexander Univ Erlangen Nurnberg FAU, Inst Pathol, Expt Tumorpathol, Erlangen, GermanyFriedrich Alexander Univ Erlangen Nurnberg FAU, Dept Pediat & Adolescent Med, Erlangen, GermanyUniv Fed Sao Paulo UNIFESP, Dept Pharmacol, Ontogeny & Epigenet Lab, Sao Paulo, SP, BrazilFAPESP [2011/0166-38, 2011/12306-1, 2014/13663-0, 2015/07925-5, 2016/06488-3]DAAD [PKZ A/12/79134]FAPESP/BAYLAT [2012/51300-7]Web of Scienc
Comprehensive functional annotation of 77 prostate cancer risk loci.
Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations--we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at r(2) ≥ 0.88%. 88% of the 727 SNPs fall within putative enhancers, and many alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium (r(2) = 0.91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a preliminary step in connecting risk to disease process
Functional Analysis and Fine Mapping of the 9p22.2 Ovarian Cancer Susceptibility Locus.
Genome-wide association studies have identified 40 ovarian cancer risk loci. However, the mechanisms underlying these associations remain elusive. In this study, we conducted a two-pronged approach to identify candidate causal SNPs and assess underlying biological mechanisms at chromosome 9p22.2, the first and most statistically significant associated locus for ovarian cancer susceptibility. Three transcriptional regulatory elements with allele-specific effects and a scaffold/matrix attachment region were characterized and, through physical DNA interactions, BNC2 was established as the most likely target gene. We determined the consensus binding sequence for BNC2 in vitro, verified its enrichment in BNC2 ChIP-seq regions, and validated a set of its downstream target genes. Fine-mapping by dense regional genotyping in over 15,000 ovarian cancer cases and 30,000 controls identified SNPs in the scaffold/matrix attachment region as among the most likely causal variants. This study reveals a comprehensive regulatory landscape at 9p22.2 and proposes a likely mechanism of susceptibility to ovarian cancer. SIGNIFICANCE: Mapping the 9p22.2 ovarian cancer risk locus identifies BNC2 as an ovarian cancer risk gene.See related commentary by Choi and Brown, p. 439
Onset of the aerobic nitrogen cycle during the Great Oxidation Event
The rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton
Identification of six new susceptibility loci for invasive epithelial ovarian cancer
Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers
Recommended from our members
Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3
Genome wide association studies (GWAS) for Parkinson's disease (PD) have previously revealed a significant association with a locus on chromosome 7p15.3, initially designated as the glycoprotein non-metastatic melanoma protein B (GPNMB) locus. In this study, the functional consequences of this association on expression were explored in depth by integrating different expression quantitative trait locus (eQTL) datasets (Braineac, CAGEseq, GTEx, and Phenotype-Genotype Integrator (PheGenI)). Top risk SNP rs199347 eQTLs demonstrated increased expressions of GPNMB, KLHL7, and NUPL2 with the major allele (AA) in brain, with most significant eQTLs in cortical regions, followed by putamen. In addition, decreased expression of the antisense RNA KLHL7-AS1 was observed in GTEx. Furthermore, rs199347 is an eQTL with long non-coding RNA (AC005082.12) in human tissues other than brain. Interestingly, transcript-specific eQTLs in immune-related tissues (spleen and lymphoblastoid cells) for NUPL2 and KLHL7-AS1 were observed, which suggests a complex functional role of this eQTL in specific tissues, cell types at specific time points. Significantly increased expression of GPNMB linked to rs199347 was consistent across all datasets, and taken in combination with the risk SNP being located within the GPNMB gene, these results suggest that increased expression of GPNMB is the causative link explaining the association of this locus with PD. However, other transcript eQTLs and subsequent functional roles cannot be excluded. This highlights the importance of further investigations to understand the functional interactions between the coding genes, antisense, and non-coding RNA species considering the tissue and cell-type specificity to understand the underlying biological mechanisms in PD
- …