107 research outputs found

    Patient-oriented simulation based on Monte Carlo algorithm by using MRI data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although Monte Carlo simulations of light propagation in full segmented three-dimensional MRI based anatomical models of the human head have been reported in many articles. To our knowledge, there is no patient-oriented simulation for individualized calibration with NIRS measurement. Thus, we offer an approach for brain modeling based on image segmentation process with <it>in vivo </it>MRI T1 three-dimensional image to investigate the individualized calibration for NIRS measurement with Monte Carlo simulation.</p> <p>Methods</p> <p>In this study, an individualized brain is modeled based on <it>in vivo </it>MRI 3D image as five layers structure. The behavior of photon migration was studied for this individualized brain detections based on three-dimensional time-resolved Monte Carlo algorithm. During the Monte Carlo iteration, all photon paths were traced with various source-detector separations for characterization of brain structure to provide helpful information for individualized design of NIRS system.</p> <p>Results</p> <p>Our results indicate that the patient-oriented simulation can provide significant characteristics on the optimal choice of source-detector separation within 3.3 cm of individualized design in this case. Significant distortions were observed around the cerebral cortex folding. The spatial sensitivity profile penetrated deeper to the brain in the case of expanded CSF. This finding suggests that the optical method may provide not only functional signal from brain activation but also structural information of brain atrophy with the expanded CSF layer. The proposed modeling method also provides multi-wavelength for NIRS simulation to approach the practical NIRS measurement.</p> <p>Conclusions</p> <p>In this study, the three-dimensional time-resolved brain modeling method approaches the realistic human brain that provides useful information for NIRS systematic design and calibration for individualized case with prior MRI data.</p

    Sub-millisecond pulsed laser engineering of CuOx-decorated Pd nanoparticles for enhanced catalytic CO2 hydrogenation

    Get PDF
    Catalytic CO2 hydrogenation to fuels and chemicals presents a promising avenue for addressing global warming and advancing toward a net-zero economy. Surface atomic rearrangement of catalysts has attracted growing interest as a means to manipulate catalyst activity and selectivity. Herein, we designed a ternary nanocatalyst comprising CuOx species decorated Pd nanoparticles (NPs) supported on Co oxide (denoted as CPCu) for catalytic CO2 hydrogenation. Sub-millisecond laser treatment (1 mJ per pulse) was used to manipulate the surface atomic arrangements of CPCu the catalyst. The CPCu nanocatalyst showed a significant enhancement in both CH4 production and CO production at 300 °C compared to the Pd/Co catalyst. Notably, the CH4 production using the laser-treated nanocatalyst (denoted as CPCu-L) was 66.6 % higher than the untreated one (CPCu) at 300 °C. Comprehensive catalyst characterizations revealed that CuOx species promoted CO2 activation, while neighboring Pd domains effectively dissociated H2 molecules, leading to enhanced CH4 production. This study demonstrates the potential of sub-millisecond laser treatment for tailoring catalyst surfaces, offering a promising strategy to design more active and selective catalysts for CO2 hydrogenation

    Characterizing porous microaggregates and soil organic matter sequestered in allophanic paleosols on Holocene tephras using synchrotron-based X-ray microscopy and spectroscopy

    Get PDF
    Allophanic tephra-derived soils can sequester sizable quantities of soil organic matter (SOM). However, no studies have visualized the fine internal porous structure of allophanic soil microaggregates, nor studied the carbon structure preserved in such soils or paleosols. We used synchrotron radiation-based transmission X-ray microscopy (TXM) to perform 3D-tomography of the internal porous structure of dominantly allophanic soil microaggregates, and carbon near-edge X-ray absorption fine-structure (C NEXAFS) spectroscopy to characterize SOM in ≤ 12,000-year-old tephra-derived allophane-rich (with minor ferrihydrite) paleosols. The TXM tomography showed a vast network of internal, tortuous nano-pores within an allophanic microaggregate comprising nanoaggregates. SOM in the allophanic paleosols at four sites was dominated by carboxylic/carbonyl functional groups with subordinate quinonic, aromatic, and aliphatic groups. All samples exhibited similar compositions despite differences between the sites. That the SOM does not comprise specific types of functional groups through time implies that the functional groups are relict. The SOM originated at the land/soil surface: ongoing tephra deposition (intermittently or abruptly) then caused the land-surface to rise so that the once-surface horizons were buried more deeply and hence became increasingly isolated from inputs by the surficial/modern organic cycle. The presence of quinonic carbon, from biological processes but vulnerable to oxygen and light, indicates the exceptional protection of SOM and bio-signals in allophanic paleosols, attributable both to the porous allophane (with ferrihydrite) aggregates that occlude the relict SOM from degradation, and to rapid burial by successive tephra-fallout, as well as strong Al-organic chemical bonding. TXM and C NEXAFS spectroscopy help to unravel the fine structure of soils and SOM and are of great potential for soil science studies

    DNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisols

    Get PDF
    This study provides fundamental knowledge about the interaction of allophane, deoxyribonucleic acid (DNA), and organic matter in soils, and how allophane sequesters DNA. The adsorption capacities of salmon-sperm DNA on pure synthetic allophane (characterised morphologically and chemically) and on humic-acid-rich synthetic allophane were determined, and the resultant DNA–allophane complexes were characterised using synchrotron-radiation-derived P X-ray absorption near-edge fine structure (XANES) spectroscopy and infrared (IR) spectroscopy. The synthetic allophane adsorbed up to 34 μg mg⁻¹ of salmon-sperm DNA. However, the presence of humic acid significantly lowered the DNA uptake on the synthetic allophane to 3.5 μg mg⁻¹ by occupying the active sites on allophane so that DNA was repulsed. Both allophane and humic acid adsorbed DNA chemically through its phosphate groups. IR spectra for the allophane–DNA complex showed a chemical change of the Si–O–Al stretching of allophane after DNA adsorption, possibly because of the alteration of the steric distance of the allophane outer wall, or because of the precipitation of aluminium phosphate on allophane after DNA adsorption on it, or both. The aluminol groups of synthetic allophane almost completely reacted with additions of small amounts of DNA (~ 2–6 μg mg⁻¹ ), but the chemical adsorption of DNA on allophane simultaneously led to the formation of very porous allophane aggregates up to ~ 500 μm in diameter. The formation of the allophane nano- and microaggregates enabled up to 28 μg mg⁻¹ of DNA to be adsorbed (~ 80% of total) within spaces (pores) between allophane spherules and allophane nanoaggregates (as “physical adsorption”), giving a total of 34 μg mg⁻¹ of DNA adsorbed by the allophane. The stability of the allophane–DNA nano- and microaggregates likely prevents encapsulated DNA from exposure to oxidants, and DNA within small pores between allophane spherules and nanoaggregates may not be accessible to enzymes or microbes, hence enabling DNA protection and preservation in such materials. By implication, substantial organic carbon is therefore likely to be sequestered and protected in allophanic soils (Andisols) in the same way as demonstrated here for DNA, that is, predominantly by encapsulation within a tortuous network of nanopores and submicropores amidst stable nanoaggregates and microaggregates, rather than by chemisorption alone

    Protective Effect of Caffeic Acid on Paclitaxel Induced Anti-Proliferation and Apoptosis of Lung Cancer Cells Involves NF-κB Pathway

    Get PDF
    Caffeic acid (CA), a natural phenolic compound, is abundant in medicinal plants. CA possesses multiple biological effects such as anti-bacterial and anti-cancer growth. CA was also reported to induce fore stomach and kidney tumors in a mouse model. Here we used two human lung cancer cell lines, A549 and H1299, to clarify the role of CA in cancer cell proliferation. The growth assay showed that CA moderately promoted the proliferation of the lung cancer cells. Furthermore, pre-treatment of CA rescues the proliferation inhibition induced by a sub-IC50 dose of paclitaxel (PTX), an anticancer drug. Western blot showed that CA up-regulated the pro-survival proteins survivin and Bcl-2, the down-stream targets of NF-κB. This is consistent with the observation that CA induced nuclear translocation of NF-κB p65. Our study suggested that the pro-survival effect of CA on PTX-treated lung cancer cells is mediated through a NF-κB signaling pathway. This may provide mechanistic insights into the chemoresistance of cancer calls

    Incorporation of atomic Fe-oxide triggers a quantum leap in the CO2 methanation performance of Ni-hydroxide

    Get PDF
    The heterogeneous catalytic conversion of carbon dioxide (CO2) to methane (CH4) via CO2 methanation offers a promising avenue for establishing the closed carbon loop. Nevertheless, the lack of effective catalysts limits its industrial applications. Considering this, we developed a novel heterogeneous catalyst comprising oxygen vacancies enriched atomic Fe-oxide clusters confined in the TiO2-supported Ni-hydroxide (denoted as NiFe-TiO2) via wet chemical reduction method. This material delivers an unprecedently high CH4 productivity of ∼24,358 mmol g-1h−1 in CO2 methanation at 300 °C, surpassing the Ni-TiO2 (12,481 mmol g-1h−1) by ∼ 95 %. On top of that, the high structural reliability of the Fe-oxide atomic clusters endows the NiFe-TiO2 catalyst with outstanding durability, where it achieves an optimum CH4 productivity of ∼ 36,399 mmol g-1h−1 after 116 cycles (155 h) with CH4 selectivity of 90.5 % and retains the pristine performance up to 220 cycles (330 h) in the stability test. With evidence from in-situ X-ray absorption and ambient pressure X-ray photoelectron spectroscopy studies, the performance descriptors and reaction pathways were unveiled, where the oxygen vacancies in the atomic Fe-oxide clusters and the adjacent Ni-hydroxide domains synergistically boost the CO2 activation and the H2 dissociation, respectively. Such a potential synergy enables the simultaneous operation of all intermediate steps for enhanced CO2 methanation kinetics on the NiFe-TiO2 surface. Most importantly, these findings not only unravel the merits of oxygen vacancies in transition metals for CO2 methanation but mark a step ahead for the rational design of heterogeneous catalysts in various catalytic applications

    Local synergetic collaboration between Pd and local tetrahedral symmetric Ni oxide enables ultra-high-performance CO2 thermal methanation

    Get PDF
    Tetrahedral symmetric NiO2 and Pd respectively facilitate H2 splitting and CO2 to CO reduction and thus enable an ultra-high CH4 production yield performance in the epitaxial interfaces in the bimetallic NiO2@Pd NPs.</p

    Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China:lessons learnt and international expert recommendations

    Get PDF
    Tracheal intubation in coronavirus disease 2019 (COVID-19) patients creates a risk to physiologically compromised patients and to attending healthcare providers. Clinical information on airway management and expert recommendations in these patients are urgently needed. By analysing a two-centre retrospective observational case series from Wuhan, China, a panel of international airway management experts discussed the results and formulated consensus recommendations for the management of tracheal intubation in COVID-19 patients. Of 202 COVID-19 patients undergoing emergency tracheal intubation, most were males (n=136; 67.3%) and aged 65 yr or more (n=128; 63.4%). Most patients (n=152; 75.2%) were hypoxaemic (Sao2 &lt;90%) before intubation. Personal protective equipment was worn by all intubating healthcare workers. Rapid sequence induction (RSI) or modified RSI was used with an intubation success rate of 89.1% on the first attempt and 100% overall. Hypoxaemia (Sao2 &lt;90%) was common during intubation (n=148; 73.3%). Hypotension (arterial pressure &lt;90/60 mm Hg) occurred in 36 (17.8%) patients during and 45 (22.3%) after intubation with cardiac arrest in four (2.0%). Pneumothorax occurred in 12 (5.9%) patients and death within 24 h in 21 (10.4%). Up to 14 days post-procedure, there was no evidence of cross infection in the anaesthesiologists who intubated the COVID-19 patients. Based on clinical information and expert recommendation, we propose detailed planning, strategy, and methods for tracheal intubation in COVID-19 patients
    corecore