
Journal of Materials Chemistry A

CORRECTION

View Article Online
View Journal | View Issue

Cite this: J. Mater. Chem. A, 2020, 8, 19058

Correction: Local synergetic collaboration between Pd and local tetrahedral symmetric Ni oxide enables ultra-high-performance CO₂ thermal methanation

Che Yan,^a Chia-Hsin Wang,^{*b} Moore Lin,^c Dinesh Bhalothia,^a Shou-Shiun Yang,^a Gang-Jei Fan,^c Jia-Lin Wang,^c Ting-Shan Chan,^b Yao-lin Wang,^d Xin Tu,^d Sheng Dai,^e Kuan-Wen Wang,^f Jr-Hau He^g and Tsan-Yao Chen*

DOI: 10.1039/d0ta90205e

rsc.li/materials-a

Correction for 'Local synergetic collaboration between Pd and local tetrahedral symmetric Ni oxide enables ultra-high-performance CO_2 thermal methanation' by Che Yan *et al.*, *J. Mater. Chem. A*, 2020, **8**, 12744–12756. DOI: 10.1039/D0TA02957B.

The authors regret the following errors in the published article:

In the abstract (page 12744), the term 'gas chromatography-mass spectrometer' should instead have read 'gas chromatography spectrometer'. On page 12745, in the sentence beginning 'The corresponding mechanisms...', the term 'gas chromatography mass spectrometry (GC-MS)' should instead have read 'gas chromatography spectrometer (GC)'.

The unit 'mmol' was used erroneously throughout; all 20 instances of this term in the text should instead have read ' μ mol'. Moreover, on page 12750, in the sentence beginning 'As for CH₄ production...', the text '1905.1 $g_{catalyst}^{-1}$ ' should instead have read '1905.1 μ mol $g_{catalyst}^{-1}$ '.

Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan. E-mail: chencaeser@gmail.com; Tel: +886-3-5715131#34271

^bNational Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

^cDepartment of Chemistry, National Central University, Taoyuan 32001, Taiwan

^dDepartment of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK

School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China

Institute of Materials Science and Engineering, National Central University, Taoyuan City 32001, Taiwan

^{*}Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong

^hInstitute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan

Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan 70101, Taiwan

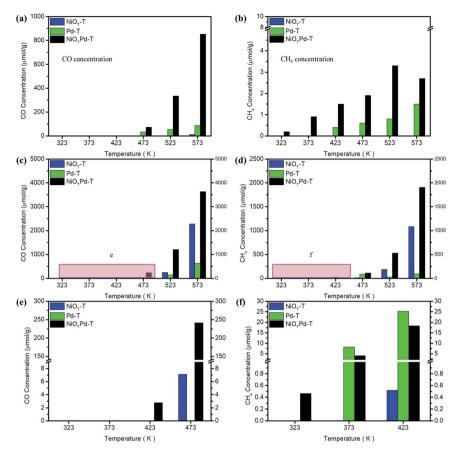


Fig. 3 The gas chromatography (GC) determined CO_2RR results for the NiO_TPd-T and control samples (NiO_T-T and Pd-T) for (a) CO and (b) CH_4 production yield in pure ambient CO₂. Results for CO and CH₄ production yield in reaction gas (CO₂ + 3H₂) are respectively demonstrated in (c) and (d). The regions marked by pink rectangles e and f are respectively shown in (e) and (f) for clarity. The GC measurements are conducted under a pressure of near 1 atm from 323 K to 573 K and the concentration is normalized by loading of catalysts (μ mol $g_{catalyst}^{-1}$).

In Fig. 3, the unit 'mmol' on the y-axis labels should instead have read 'mmol'; a corrected version of the figure is provided below. Furthermore, in the Fig. 3 caption, the phrase 'pure ambient CO' should instead have read 'pure ambient CO₂'.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.