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Abstract 47 

This study provides fundamental knowledge about the interaction of allophane, deoxyribonucleic 48 

acid (DNA), and organic matter in soils, and how allophane sequesters DNA. The adsorption 49 

capacities of salmon-sperm DNA on pure synthetic allophane (characterised morphologically and 50 

chemically) and on humic-acid-rich synthetic allophane were determined, and the resultant DNA-51 

allophane complexes were characterised using synchrotron-radiation-derived P X-ray absorption 52 

near-edge fine structure (XANES) spectroscopy and infrared (IR) spectroscopy. The synthetic 53 

allophane adsorbed up to 34 µg mg-1 of salmon-sperm DNA. However, the presence of humic acid 54 

significantly lowered the DNA uptake on the synthetic allophane to 3.5 µg mg-1 by occupying the 55 

active sites on allophane so that DNA was repulsed. Both allophane and humic acid adsorbed DNA 56 

chemically through its phosphate groups. IR spectra for the allophane-DNA complex showed a 57 

chemical change of the Si−O−Al stretching of allophane after DNA adsorption, possibly because of 58 

the alteration of the steric distance of the allophane outer wall, or because of the precipitation of 59 

aluminium phosphate on allophane after DNA adsorption on it, or both. The aluminol groups of 60 

synthetic allophane almost completely reacted with additions of small amounts of DNA (~2−6 µg 61 

mg-1), but the chemical adsorption of DNA on allophane simultaneously led to the formation of 62 

very porous allophane aggregates up to ~500 µm in diameter. The formation of the allophane nano- 63 

and microaggregates enabled up to 28 µg mg-1 of DNA to be adsorbed (~80% of total) within 64 

spaces (pores) between allophane spherules and allophane nanoaggregates (as “physical 65 

adsorption”), giving a total of 34 g mg-1 of DNA adsorbed by the allophane. The stability of the 66 

allophane-DNA nano- and microaggregates likely prevents encapsulated DNA from exposure to 67 

oxidants, and DNA within small pores between allophane spherules and nanoaggregates may not be 68 

accessible to enzymes or microbes, hence enabling DNA protection and preservation in such 69 

materials. By implication, substantial organic carbon is therefore likely to be sequestered and 70 

protected in allophanic soils (Andisols) in the same way as demonstrated here for DNA, that is, 71 
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predominantly by encapsulation within a tortuous network of nanopores and submicropores amidst 72 

stable nanoaggregates and microaggregates, rather than by chemisorption alone. 73 

 74 

Keywords:  75 
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Nanoaggregates, Carbon sequestration 77 

 78 

Highlights: 79 

 Synthetic allophane was able to adsorb up to 34 µg mg-1 of salmon-sperm DNA  80 

 Adding humic acid to the synthetic allophane lowered its DNA uptake to 3.5 µg mg-1 81 

 The DNA-allophane complexes were characterised using P XANES and IR spectroscopy 82 

 Stable microaggregates led to ~80% of DNA being occluded in tortuous nanopores 83 

 Carbon in Andisols is protected in a network of nanopores thus its turnover is slow 84 

  85 
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1. Introduction 86 

Andisols cover only approximately 0.8% of the ice-free surface in the world (Soil Survey 87 

Staff, 1999; McDaniel et al., 2012) but sequester upwards of ~1.8% of the total global soil carbon 88 

stocks (Matus et al., 2014;  Takahashi and Dahlgren, 2016). Many Andisols are dominated by 89 

allophane and usually contain relatively large amounts of organic matter, up to ~ 8−12% organic 90 

carbon (McDaniel et al., 2012). Allophane is a nanocrystalline aluminosilicate with a formula 91 

(1−2)SiO2·Al2O3·(2−3)H2O (Abidin et al., 2007; McDaniel et al., 2012) and it comprises hollow 92 

spherules ~3.5 to 5 nm in diameter with high specific surface areas (SSAs)2 – from about 250 m2 g-1 93 

to as much as 1125 m2 g-1 (e.g. Maeda et al., 1977; Parfitt et al., 1980; Wada, 1980; Allbrook, 1985; 94 

Parfitt, 1990; Ohashi et al., 2002; Iyoda et al., 2012 ). The high organic carbon content generally is 95 

significantly correlated with allophane content and SSA (Chevallier et al., 2010; Parfitt and Yuan, 96 

2012), and carbon turnover in Andisols is slower than in other soils (Torn et al., 1997; Parfitt, 97 

2009). Hence it is commonly acknowledged that Andisols can not only adsorb substantial organic 98 

carbon but also protect it from degradation (Dahlgren et al., 2004; Goh, 2004; Calabi-Floody et al., 99 

2014). Allophane spherules are reportedly crucial in enabling Andisols firstly to store organic 100 

carbon and secondly to strongly adsorb phosphate (Parfitt, 1989, 2009; Calabi-Floody et al., 2011; 101 

Yuan and Wada, 2012).  102 

 103 

 104 

 105 

 106 

2All abbreviations are defined together at the end of the text. 107 

 108 
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Adsorption of organic matter by these Al-rich nanocrystalline minerals governs the mobility 109 

of organic matter in the Andisols (Harsh, 2012), and the chemical bonding between the active 110 

aluminol groups on allophane spherules and organic matter is then considered to allow carbon to be 111 

adsorbed and stored (Yuan et al., 2000; Buurman et al., 2007; Parfitt, 2009; McDaniel et al., 2012; 112 

Takahashi and Dahlgren, 2016). Moreover, allophane spherules tend to form clusters of sub-113 

rounded “nanoaggregates” about 100 nm in diameter (Calabi-Floody et al., 2011), which could also 114 

stabilize organic carbon within aggregates and allow long-term carbon sequestration in allophane-115 

rich soils (Six et al., 2000a; Blanco-Canqui and Lal, 2004; Lehmann et al., 2007; Chevallier et al., 116 

2010). 117 

Nanocrystalline aluminosilicates show a phosphate adsorption capacity up to two orders of 118 

magnitude greater than that of long-range-order phyllosilicates and Fe- and Al-oxides/hydroxides 119 

(Hesterberg, 2010). Andisols thus have a high affinity for deoxyribonucleic acid (DNA) 120 

(Hashizume and Theng, 2007; Saeki et al., 2010a, 2010b) as well as phosphate (Allbrook, 1983, 121 

1985; Parfitt, 1989). The adsorption of DNA on clay minerals is one of the most important 122 

mechanisms of DNA retention in soils (Ogram et al., 1988; Paget et al., 1992), and allophane, along 123 

with organic matter, presumably could facilitate the preservation of environmental DNA in soils 124 

hence could, if extractable, enable reconstruction of past environments via the DNA preserved 125 

(Huang et al., 2012; Rawlence et al., 2014). Furthermore, Matsuura et al. (2014) have hypothesised 126 

that allophane is able to protect DNA and ribonucleic acid (RNA) from ultraviolet light and, using 127 

computer modelling, simulated the interaction between DNA and allophane. Their simulations 128 

illustrated that the DNA strands underwent elongation and the phosphate backbone of DNA altered 129 

after bonding to allophane (Matsuura et al., 2013), possibly as a result of chemical adsorption of 130 

DNA through its phosphate groups to aluminol groups at the wall perforations of allophane (Huang 131 

et al., 2014). However, a more detailed understanding of the adsorption mechanism of DNA on 132 
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allophane has not been developed, and the driving factor allowing allophane to adsorb more DNA 133 

than other clay minerals has remained vague, thus providing impetus for the studies reported here. 134 

In natural allophanic soil systems, the humic substances associated with allophane strongly 135 

bind to DNA and immobilize it (Saeki et al., 2011). However, some studies have contrarily shown 136 

that clay from which organic matter has been removed adsorbs more DNA than organic-matter-rich 137 

clay (Cai et al., 2006, 2007). Hence the level of influence of humic substances and organo-minerals 138 

on DNA adsorption in allophanic soils has been controversial and requires further examination. 139 

 140 

1.1. Hypothesis 141 

In this study it is therefore hypothesised that DNA is adsorbed by allophane both chemically 142 

and physically, and “physical adsorption” of DNA within pores amidst allophane spherules and 143 

nanoaggregates (defined here as aggregated clusters of allophane spherules up to ~100 nm in size) 144 

or microaggregates (defined here as aggregated clusters of allophane nanoaggregates up to several 145 

hundred micrometres in size, after Elliot, 1986) brings about the exceptionally high DNA 146 

adsorption capacity of allophane and enables DNA to be preserved. To test this hypothesis, the 147 

interactions between well-characterised synthetic allophane, salmon-sperm DNA, and humic acids 148 

are examined using P X-ray absorption near-edge structure (XANES) spectroscopy. XANES 149 

spectroscopy has been widely used in soil science to analyse the species of molecules, the oxidation 150 

state of a targeted atom, and the binding geometry of this atom with surrounding atoms in a 151 

molecule (e.g. Hesterberg, 2010; Lehmann and Solomon, 2010; Terzano et al., 2010). As well, the 152 

structural alterations of DNA and allophane spherules after they bind to each other are determined 153 

using infrared (IR) spectroscopy, which has been extremely useful to characterise chemicals and to 154 

describe structural or molecular alteration of chemicals adsorbed on clays (e.g. Farmer, 1968; 155 
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Parfitt, 1989; Shin et al., 2004; Tahoun, 2014). Finally, the degree of aggregation/complexation of 156 

DNA and allophane are examined using high-resolution laser sizing.  157 

The findings with respect to DNA provide a detailed mechanism to help explain carbon 158 

sequestration and its unique longevity in Andisols. 159 

  160 

2. Materials and methods 161 

 162 

2.1. Synthetic allophane 163 

 164 

2.1.1. Allophane synthesis 165 

Pure allophane was synthesised according to Ohashi et al. (2002) with two minor 166 

modifications as follows. The Si source, Na2SiO4, for synthetic allophane was replaced with 167 

Na2SiO3, and the alkalinity of the Si solution was adjusted by adding NaOH, given that the 168 

alkalinity of Si solution should be triple the Al molarity. The allophane precursor was made with a 169 

mixture of Si and Al solutions (at the same concentration but with an atomic ratio of Si/Al of 0.75) 170 

together with the addition of NaOH, and the precursor was incubated for 48 h.  In the current study, 171 

two synthetic allophane products with 50 mmol L-1 and 100 mmol L-1 of initial solutions were 172 

prepared, and the products were labelled as 50-allophane and 100-allophane, respectively. After 173 

hydrothermal incubation for 48 h, the synthetic products were washed with deionised (DI) water 174 

until the pH became neutral. For the DNA adsorption experiments, the dispersed allophane in DI 175 

water was adjusted accurately to pH 6.5 and stored without drying. 176 

 177 
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2.1.2. Allophane analysis 178 

Transmission electron microscopy (TEM) was employed to observe the morphology of the 179 

synthetic allophane. For TEM images of the synthetic allophane, 10 µL of diluted allophane 180 

dispersion was spread on a lacey formvar/carbon copper grid (200 mesh) followed by drying at 181 

40°C for moisture removal. Two TEM facilities were used, a Philips CM30 TEM and a JEOL 182 

TEM-3010 scanning TEM for images with varied magnifications. The synthetic allophane was 183 

damaged and melted in a fairly short time under the X-ray beam because allophane is heat-sensitive, 184 

and so the synthetic allophane was photographed as quickly as possible to avoid over-exposure of 185 

the samples to X-rays. 186 

As well as TEM-based morphological observation, the allophane content of the synthesised 187 

product was determined. To accurately estimate its Si/Al ratio, the synthetic allophane was frozen 188 

rapidly with liquid nitrogen followed by freeze-drying. The allophane content was estimated by 189 

oxalate extraction of Al and Si and pyrophosphate extraction of Al (following Parfitt and Wilson, 190 

1985; Blakemore et al., 1987). The results showed that the Al/Si ratio was 1.2 and the allophane 191 

yield was 95% of the total product. The SSA of the synthetic allophane was analysed via the 192 

Brunauer-Emmett-Teller (BET) method with nitrogen gas adsorption at -195°C (Brunauer et al., 193 

1938), and pore volume and pore size were evaluated via the Barrett-Joyner-Halenda (BJH) method 194 

(Barrett et al., 1951). 195 

 196 

2.1.3. Preparation of humic-acid-laden synthetic allophane 197 

To understand the influence of humic substances on the adsorption of DNA on allophane, 198 

the dispersed 50-allophane in DI water  was incubated overnight with humic acid (Pahokee peat 199 

humic acid standard, which was obtained from the International Humic Substances Society) to 200 
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allow humic acid (HA) adsorption on synthetic allophane. Prior to incubation, the dried HA powder  201 

was dissolved in diluted NaOH and then adjusted to pH 6.5 using 0.1M HCl, and the resulting 202 

solution was then centrifuged at 8000 rpm (11,325 g) to remove insoluble HA. After incubation, the 203 

allophane-HA complex was repeatedly washed with DI water three to five times to remove unbound 204 

HA. The allophane-HA complex was re-suspended completely and adjusted to pH 6.5 for the DNA 205 

adsorption experimentation. 206 

 207 

2.2. Adsorption isotherm of salmon-sperm DNA on synthetic allophane 208 

The double-stranded salmon-sperm DNA (Sigma-Aldrich product number D1626) was 209 

dissolved in sterile DI water to provide a 2 mg mL-1 DNA solution, and the DNA additions for 210 

adsorption experimentation were in the range of 0 to 200 µL. The DNA solution was added to two 211 

sterile 1.5-mL tubes, one containing a given volume of dispersed allophane in DI water comprising 212 

10 mg of synthetic allophane, and the other sterile DI water of the same volume as used to disperse 213 

the allophane. The two tubes were centrifuged at 13,000 rpm (10,000 g) after shaking 3 h on a 214 

rotator at room temperature, and the supernatants were then collected and analysed 215 

spectrophotometrically at 260 nm for DNA concentration. The adsorbed DNA was calculated from 216 

the difference between the amounts of DNA with and without 10 mg of synthetic allophane. These 217 

experiments were conducted in triplicate.  218 

The adsorptive affinity and maximum adsorption capacity of DNA on synthetic allophane 219 

were analysed using the Langmuir equation given below: 220 

q =
𝐴𝑚𝑎𝑥 ∙ 𝑘 ∙ 𝐶

1 + 𝑘 ∙ 𝐶
 221 
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where q represents the adsorbed DNA, Amax is a constant representing the maximum adsorption 222 

capacity (monolayer coverage), k is an adsorptive constant which is often considered an affinity 223 

parameter or binding strength, and C is the equilibrium-dissolved concentration of DNA. 224 

After removal of supernatant, the tubes with remaining allophane and salmon-sperm DNA 225 

complexes were placed in a vacuum desiccator for two days for drying, and the dried allophane-226 

DNA complexes were stored at 4°C for further chemical analysis. DNA adsorption on HA-rich 227 

allophane was performed following the same procedure as above. 228 

 229 

2.3. Phosphorus X-ray absorption near-edge structure (P XANES) spectroscopy 230 

The salmon-sperm DNA-allophane complexes were examined and characterised via 231 

synchrotron radiation-based P XANES. To obtain optimum signal-to-noise ratios of spectra, the air-232 

dried allophane-DNA complexes were ground finely for uniformity and they were then compressed 233 

into pellets to increase the intensity of X-ray absorbance. The pellets of dried salmon-sperm DNA 234 

and allophane-DNA complexes were mounted on stainless steel sample holders and held in place 235 

with Kapton tape which has no X-ray absorbance over the P X-ray absorption region. The P X-ray 236 

absorption spectra were collected at beamline 16A1 Tender X-ray Absorption Spectroscopy at the 237 

National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan. The beam current 238 

under standard operating conditions is 300 mA, and a Si(III) double-crystal monochromator is used 239 

for incident X-ray energy selection at a resolution of 1.5−2.110-4 ΔE/E. For the samples used in 240 

the current study, the P X-ray absorption was carried out under fluorescence mode, along with the 241 

employment of a Lytle detector purged with nitrogen gas. The beam was optimised and calibrated 242 

in advance against the adsorption edge of metallic Zr at 2223 eV. 243 
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P XANES spectra for samples were collected with photon energies in the range 2106−2230 244 

eV, which are 40 eV forward and 84 eV behind the P K-edge of 2146 eV, and two to three scans 245 

were completed for each sample to obtain a representative spectrum. Over the scanning region of 246 

2138−2180 eV, an energy step size of 0.2 eV was used along with a dwell time of 4 s per step for 247 

elaborate analysis, and a step size of 0.5 eV and dwell times of 2 s were used for the remaining 248 

energy region. The spectra obtained were normalized and merged through the Athena program, an 249 

interface to IFEFFIT (version 1.2.11) (Ravel and Newville, 2005), and then plotted. 250 

 251 

2.4. Infrared (IR) spectroscopy 252 

IR spectra for samples were obtained using Fourier transform infrared (FTIR) 253 

microspectroscopy at beamline BL14A1 at the NSRRC. This beamline employs a Nicolet Magna 254 

860 FTIR spectrometer equipped with a Continuum IR microscope (Spectra Tech), and the FTIR 255 

facility is configured with synchrotron light as an external light source for the spectrometer.  256 

Pure salmon-sperm DNA, pure synthetic allophane, and aggregates of synthetic allophane 257 

with differing concentrations of salmon-sperm DNA spikes (see section 2.2) were placed on a 258 

holder for analysis. Experiments were performed under the ring operation of top-up mode. Samples 259 

were analysed by IR in a range of 4000−600 cm-1, with the co-addition of 128 scans. A spectrum of 260 

background signal (e.g. gases and moisture in atmosphere) without samples was collected for 261 

background removal. Data collection and background removal were completed via the program 262 

OMNICTM, and spectra were then processed using OMNICTM and OriginPro 8. 263 

 264 

2.5. Size distribution of DNA-allophane complexes 265 
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To examine the aggregation of synthetic allophane after adsorbing DNA, salmon-sperm 266 

DNA of varied concentrations were added into 30 mL of dispersed synthetic allophane in DI water  267 

for DNA adsorption. After allowing 3 h for complexation, allophane-DNA complexes with various 268 

DNA additions were collected without precipitation or centrifugation. The size distributions of 269 

allophane-DNA aggregates were determined by a Malvern Mastersizer 2000 laser diffractometer. 270 

Samples were injected into a vigorous stirring unit to homogenize them before throughput into the 271 

main measurement system (Sochan et al., 2012). DI water was used as the dispersant, where the 272 

dispersant refractive index was 1.33. Particle refractive index was set consistently at 1.5 for all 273 

samples. 274 

 275 

3. Results and discussion 276 

 277 

3.1. Physical properties of synthetic allophane spherules 278 

The electron micrographs showed the spherical morphology of the synthetic allophane (Fig. 279 

1) and indicated that the spherules had an external diameter about 10−15 nm (no significant size 280 

differences between the 50- and 100-allophanes were observed) and a wall thickness of ~1 nm (Fig. 281 

1c). The particle size of the synthetic allophane was somewhat larger (by about three times) than the 282 

reported size of ~3.5−5 nm for natural allophane spherules (Creton et al., 2008; Parfitt, 2009), 283 

probably attributable to the unconstrained growth of synthetic allophane in the laboratory setting 284 

(Churchman and Lowe, 2012). It was also observed under TEM that allophane spherules coalesced 285 

naturally to form allophane nanoaggregates ~50−100 nm in diameter, and the aggregates then 286 

formed networks of large porous allophane aggregates in the size range of hundreds of nanometres 287 

(Fig. 1d).  288 
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 289 

Fig. 1. Freeze-dried synthetic allophane (a) and the TEM images of the synthetic allophane showing 290 

the spherical and hollow morphology of allophane (b and c) as well as allophane nanoaggregates 291 

(d). The heat-sensitive allophane was damaged under the electron beam at high magnification, but 292 

the consistent spherical shape of allophane and the thickness of the allophane wall (in circles) are 293 

evident in photos b and c, respectively. 294 

 295 

The discrete synthetic allophane spherules (equivalent to “particles” in the terminology of  296 

Bergaya and Lagaly, 2013, p.13) and their networks are in accordance with properties of natural 297 

allophanes observed in soils from New Zealand and Japan (Fig. 2) and elsewhere (Henmi and 298 

Wada, 1976; Maeda et al., 1977; Wells and Northey, 1984; Parfitt, 1990; Karube et al., 1996; 299 

Kaufhold et al., 2010; Delmelle et al., 2015). Karube et al. (1996) showed that unit particles of 300 

allophane formed domains (“primary floccules”, which are referred to as nanoaggregates in the 301 

current paper) about 100 nm in diameter “like strings of beads” (Fig. 2c); and micrometre-sized 302 

clusters of allophane nanoaggregates (which are referred to here as microaggregates) in a dilute 303 

“suspension”, analogous to the characteristics of synthetic allophane shown in Fig. 1d. Earlier, 304 

Allbrook (1985) suggested that surficial moisture films allow allophane spherules to remain discrete 305 

(even when aggregated) rather than conjoining into large micelles that characterise crystalline 306 

(platy) clays, thereby explaining the high porosity (and low bulk density) of allophanic soils.  307 

 308 
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 309 

Fig. 2. Micrographs of natural allophane spherules occurring in (a) New Zealand, reproduced from 310 

Parfitt (1990), p. 345, with kind permission of CSIRO Publishing, Melbourne, Victoria, Australia, 311 

http://www.publish.csiro.au/nid/84/paper/SR9900343.htm (© CSIRO 1990); (b) Japan, reproduced 312 

from Henmi and Wada (1976), p.382, with kind permission of the Mineralogical Society of 313 

America; and (c) Japan, reproduced from Karube et al. (1996), p. 486, with kind permission of The 314 

Clay Minerals Society, publisher of Clays and Clay Minerals.  315 

 316 

The spaces within the allophane nanoaggregates (inter-spherule spaces) were typically  ~2 317 

nm (according to measurements of the distances between spherules in TEM micrographs), whereas 318 

the spaces between the nanoaggregates (inter-nanoaggregate spaces) within microaggregates were 319 

of various sizes up to ~500 nm (see also Fig. 10C, below). The spaces (pores) could be further 320 

distributed into nanopores, which are defined here as < 100 nm in diameter, and submicropores 321 

which are ~100 to 500 nm in diameter. The high volume of nanopores and submicropores 322 

potentially allow the allophane aggregates to be highly porous and adsorptive (see section 3.5 323 

below). Such numerous nanopores in Andisols were described by Chevallier et al. (2010) as having 324 

a fractal pore structure and therefore a pore network characterised by a high degree of tortuosity 325 

aptly called a “nanolabyrinth”.  326 

The estimated unit particle size of the synthetic allophane via BET was 16−23 nm (Table 1), 327 

slightly larger than the more accurate sizes estimated using TEM. The high pore volume of the two 328 

http://www.publish.csiro.au/nid/84/paper/SR9900343.htm
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synthetic allophane samples corresponded with the observations made using TEM, but the 329 

measured SSAs and pore volumes and pore sizes of 50-allophane and 100-allophane were 330 

somewhat different (Table 1). The SSAs for 50- and 100-allophane were 257 and 374 m2 g-1, and 331 

estimations of pore volume were 0.59 and 0.73 cm3 g-1, and of pore size were ~10 and ~8 nm, 332 

respectively. Allophane synthesised by Ohashi et al. (2002) using the same method and similar 333 

concentrations of Si and Al solutions as employed in the current study, possessed similar pore 334 

volumes, up to 0.78 cm3 g-1,  but somewhat higher SSAs up to 550 m2 g-1. However, Kaufhold et al. 335 

(2010) reported a SSA of 348 m2 g-1 for synthetic allophane (made using the method of Ohashi et 336 

al., 2002) that closely matches that of the 100-allophane. The SSAs of some natural allophanes in 337 

New Zealand range from ~580 to 1125 m2 g-1 (Parfitt and Henmi, 1980; Allbrook, 1983; Parfitt, 338 

1990). The differences in the SSAs of natural versus synthetic allophane are likely to have resulted 339 

from other colloids (e.g. organic matter, ferrihydrite, and halloysite) contributing a range of SSAs in 340 

the natural samples, and the SSAs for synthetic allophane are mainly influenced by the sizes of 341 

spherules (assumptions regarding monolayer coverage are also possible factors) (Allbrook, 1983; 342 

Parfitt, 1990). The higher adsorptivity of the 100-allophane than that of the 50-allophane 343 

presumably resulted from the higher concentrations of initial Si and Al solutions in making the 100-344 

allophane, which led to relatively more numerous active aluminol groups on it. The nitrogen 345 

adsorption-desorption isotherms of two synthetic allophane products both showed hysteresis loops 346 

(Fig. 3), which are indicative of the presence of mesopores (2−50 nm in diameter) with capillary 347 

condensation within allophane samples (Neimark et al., 2000; Iyoda et al., 2012). 348 

 349 

 350 

 351 
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Table 1 Specific surface area and pore volume and pore size analyses of the two synthetic 352 

allophanes used in this study. 353 

 50-allophane 100-allophane 

Size of nanoparticles (nm) 23.31 16.02 

BET surface area (m2 g-1) 257 374 

BJH pore volume (cm3 g-1) 0.59 0.73 

BJH pore size (nm) 9.92 7.67 

 354 

 355 

Fig. 3. N2 gas adsorption-desorption isotherm on the two synthetic allophane products. 356 

 357 

3.2. DNA adsorption capacity of synthetic allophane 358 

The adsorption isotherms of salmon-sperm DNA on 50- and 100-allophane (Fig. 4) can be 359 

classified as L-shaped isotherms, which are characterised by a decreasing slope while concentration 360 

increases because the vacant adsorptive sites become covered and saturated (Sposito, 1989). The 361 

calculated adsorption maximum (Amax) of DNA by 100-allophane, with a comparatively high SSA 362 
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and pore volume, was 34 µg mg-1 allophane (adsorptive coefficient k was 0.0044), and Amax for 363 

DNA on 50-allophane was 26 µg mg-1 allophane (k was also 0.0044). That the 50- and 100-364 

allophane both had the same adsorptive coefficients indicated that their surface adsorptive energies 365 

are similar. The adsorption isotherms both showed a rapid and strong adsorption of DNA on to 366 

allophane when DNA additions were low, followed by weakening adsorption whilst DNA additions 367 

increased. However, the different DNA adsorption capacities for 50- and 100-allophane (26 and 34 368 

µg mg-1, respectively) mainly resulted from the different numbers of active sites of the two 369 

materials. 370 

 371 

Fig. 4. Adsorption isotherms of salmon-sperm DNA on 10 mg of 50-allophane or 100-allophane. 372 

Reaction time was 3 h. The DNA adsorption isotherms were fitted to a Langmuir model, and the 373 

coefficients of determination (r2) of Langmuir fitting for DNA adsorption on 50-allophane and 100-374 

allophane were 0.987 and 0.995, respectively. 375 
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In contrast to the findings obtained here from DNA adsorption on moist synthetic allophane, 376 

Saeki et al. (2010a) reported the maximum DNA adsorption capacity for dried synthetic allophane 377 

at pH 6 to be only 5 µg mg-1. Factors that influence the rate of DNA adsorption on allophane 378 

include acidity and ionic strength and also the moisture status of allophane. The drying process 379 

always generates non-reversible shrinkage of allophane aggregates and lowers the specific SSA 380 

(Rousseaux and Warkentin, 1976; Allbrook, 1992; Gray and Allbrook, 2002; Woignier et al., 2007; 381 

Kaufhold et al., 2010), potentially by ~40% according to Allbrook (1985). Consequently, it is 382 

concluded that drying would reduce DNA adsorption capacity of allophane and that it is ideal to 383 

keep synthetic allophane moist as a gel for subsequent applications. 384 

 385 

3.2.1. Influence of humic acid on DNA adsorption capacity of 50-allophane 386 

It was found that the presence of humic acid on the surface of synthetic 50-allophane 387 

significantly hampered the adsorption of DNA (Fig. 5), reducing the capacity from 26 to 3.5 µg 388 

DNA for 1 mg of synthetic allophane (note the 100-allophane had a maximum DNA uptake of 34 389 

g mg-1). This result accords with those of Cai et al. (2006) and Saeki and Sakai (2009), who both 390 

showed that a decrease of organic matter raises DNA adsorption on clay minerals and colloid 391 

particles from soils. In the current study, the relatively low DNA adsorption on the humic acid-rich 392 

synthetic allophane indicated either that humic acid was competitive with DNA and/or that the 393 

humic acid had already occupied the active aluminol groups on surface of allophane and hence 394 

fewer adsorptive sites on allophane remained. This discovery  that humic acid effectively reduces 395 

the capacity of DNA adsorption by allophane  suggests that allophanic soils and paleosols, 396 

characterised typically by a high content of organic matter as noted earlier, may not be so 397 

favourable for DNA adsorption from a long-term perspective as previously considered. 398 

 399 



19 
 

 400 

Fig. 5. The measured adsorption isotherms of salmon-sperm DNA on humic acid (HA)-free and 401 

HA-rich synthetic 50-allophane (both at pH 6.5) along with fitting to a Langmuir model (reprinted 402 

from Huang et al., 2014, p. 170, with kind permission of Springer). Each data point represents the 403 

average adsorption of samples in triplicate. The coefficients of determination (r2) of Langmuir 404 

fitting for DNA adsorption on HA-free allophane and for HA-rich allophane were 0.995 and 0.946, 405 

respectively.  406 

 407 

3.3. P XANES spectra for allophane- or humic-acid-associated DNA 408 

The P XANES spectrum for pure salmon-sperm DNA (bold spectrum in Fig. 6) shows a 409 

sharp and strong white-line (WL) peak at 2153 eV, and a post-edge shoulder between 2160 and 410 

2180 eV without showing pre-edge features. The P XANES spectrum for the allophane-associated 411 

DNA shows a pre-edge hump (2135–2141.1 eV) on the low-energy side of the absorption edge, 412 
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along with a slight shift of the WL peak from 2153.0 eV to 2153.3 eV (Fig. 6). The WL peak for the 413 

allophane-DNA complex could be attributed to the propagation of P 1s electrons into 414 

P(3p)−O(2p)−Al(3p) antibonding molecular orbitals (Khare et al., 2005) where the nuclei are 415 

repelled by positive charges of Al ions. In comparing the two XANES spectra, the positive shift of 416 

the WL peak for the allophane-associated DNA may be explained by the charge relocation from Al 417 

to P as a consequence of the strong electronegativity of DNA base pairs arising after the DNA was 418 

adsorbed chemically on to the allophane. 419 

 420 

 421 

Fig. 6. Normalized P XANES spectra for pure salmon-sperm DNA, allophane-DNA complex, and 422 

allophane-HA-DNA complex. Two or three scans for one sample were obtained and then merged 423 

together for an average spectrum. The appended box shows detailed variations of spectra over the 424 

region of 2152−2156 eV. 425 
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The behaviour of salmon-sperm DNA adsorption on humic-acid-rich allophane was 426 

illustrated by the P XANES spectrum as well (dashed spectrum in Fig. 6), whereby the WL peak for 427 

humic acid-associated DNA was shifted forward to high energy relative to allophane-associated 428 

DNA, along with amplified intensity of the WL peak and post-edge backscattering hump (see inset, 429 

Fig. 6). The DNA bound to the humic acid covering the allophane characteristically showed not 430 

only the chemical adsorption of DNA onto humic acid but also the oxidation of DNA molecules 431 

because of the decoupling between phosphate ligands of DNA and the adsorptive sites of humic 432 

acid, thereby confirming the high affinity of DNA and humic acid (Saeki et al., 2011). Accordingly, 433 

it was expected that the adsorption of DNA on organo-allophane complexes would help to retain 434 

environmental DNA in such soil materials. However, the negatively-charged humic acid (and its 435 

ligands) atop allophane suppressed the charge relocation from phosphorus within the DNA 436 

molecules to the adsorptive ligands of humic acid, a process illustrated by the higher WL intensity 437 

for DNA bound to the humic-acid-rich allophane compared with the WL intensity for DNA on the 438 

humic-acid-free allophane. Hence it is concluded that humic acid instead reduces DNA adsorption 439 

in allophanic soils by not only attaching to active sites on the allophane spherules (thus precluding 440 

DNA from binding) but also by repelling the negatively-charged phosphate groups in the DNA 441 

molecules by electrostatic repulsion. 442 

Even though humic acids inhibit the adsorption of DNA by allophane, the organo-allophane 443 

complex in soils retains an ability to stabilize some environmental DNA by chemical adsorption and 444 

possibly store the DNA indirectly. Using P XANES, Huang et al. (2014) analysed a natural 445 

allophanic soil sample, to which salmon-sperm DNA had been added, in order to ascertain 446 

specifically how DNA was adsorbed on allophane. However, the result was not conclusive because 447 

it was unclear whether the added DNA was chemically bound to the allophane or to organics, or 448 

both. In the present study, however, the spectrum from humic acid-associated DNA can be 449 

distinguished from that for allophane-associated DNA. Accordingly, the distinct WL peak at 2153.8 450 
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eV for DNA associated with humic acid indicates that the salmon-sperm DNA added into the 451 

natural allophanic soil (as reported by Huang et al., 2014) was in fact chemically bound to humic 452 

acid or organics in soils rather than to the allophane spherules directly because the active sites on 453 

allophane had been naturally occupied by organics. 454 

 455 

3.4. Infrared spectra for pure DNA, allophane, and DNA-allophane complexes 456 

The identifiable infrared spectral features from low wavenumbers for pure salmon-sperm 457 

DNA (Fig. 7) correspond to P=O stretching (at 1098 cm-1), O−P−O bending (at 1240 cm-1), CH2 458 

and CH3 bending (at 1300−1500 cm-1), C=C stretching within amine bases (at 1450−1600 cm-1), 459 

C=O stretching within amine bases (at approximately 1700 cm-1), and finally OH and NH stretching 460 

(at 3000−3400 cm-1) (Brown and Poon, 2005). With the use of infrared spectroscopy, the DNA 461 

molecule was characterised mainly by absorbance of amine bases and phosphate groups, whereas 462 

the absorbances of methylene bending, methyl bending, and aliphatic stretching were not distinct. 463 

Freeze-dried synthetic allophane was characterised by strong infrared absorption between 900 and 464 

1000 cm-1, ascribable to the predominance of Si−O−Al bonds of allophane spherules and by the 465 

medium absorption around 3000 to 3700 cm-1 relating to the hydroxyl groups on the surface of 466 

allophane, together with the contribution of organic impurities near 1600 cm-1 (Parfitt and Henmi, 467 

1980, 1982). After DNA adsorption on synthetic allophane, the addition of 0.2% salmon-sperm 468 

DNA induced a steric alteration in Si−O−Al stretching of allophane: the strong absorption band at 469 

1200 cm-1 of allophane was split into two broad sub-bands at 990 and 1080 cm-1 (bold line in Fig. 470 

7), and the PO2
- signal of the DNA molecule at 1240 cm-1 was not observed. The disappearance of 471 

P−O stretching within the DNA molecule after it is bound to allophane supports the conclusion that 472 

allophane binds to DNA through its phosphate groups (especially through the deprotonated P−O 473 

sites). On the other hand, the alteration of Si−O−Al stretching of allophane after DNA adsorption 474 



23 
 

confirmed that DNA was attached to the reactive aluminol (AlOH) defects on the surface of 475 

allophane (Nanzyo, 1984; Parfitt, 1989), and the signal of Si−O−Al stretching shifted or 476 

disappeared because of the spatial inflexion of the allophane wall or because of the precipitation of 477 

aluminium phosphates (Parfitt, 1989) (or both). 478 

 479 

 480 

Fig. 7. Normalized infrared spectra for pure salmon-sperm DNA, synthetic allophane, and 481 

allophane-DNA complex. Identified spectral features at various wavenumbers correspond to OH 482 

group (3700−3000), C=C in the base planes of DNA (1690−1490), PO2
− of DNA (1240), P=O 483 

(1098), and stretching Si−O−Al of allophane (1020). 484 

 485 

 486 
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With an increase in concentration of additional DNA (0.2, 0.7, and 1.1%) onto synthetic 487 

allophane, the intensity of the infrared absorption band at 1080 cm-1 increased and shifted gradually 488 

but the absorbance at 990 cm-1 remained the same (Fig. 8). Consequently, the absorbance at  489 

990 cm-1 could be assigned to the chemical change of Si−O−Al bonding on the surface of allophane 490 

spherules after DNA adsorption because the peak at 990 cm-1 did not alter with the rising 491 

concentration of additional DNA. This result suggests that almost all the reactive defects of 492 

allophane spherules had reacted and altered chemically after the addition of only a small amount of 493 

DNA (e.g. 0.2% of DNA spike). More DNA, however, could still be taken up slowly even though 494 

the reactive sites had been saturated and would not change chemically further, and so other DNA 495 

adsorption mechanisms must have taken place to enable the uptake of more DNA by allophane. 496 

 497 

Fig. 8. Normalized infrared spectra for three allophane-DNA complexes with 2 (0.2%), 7 (0.7%), 498 

and 11 (1.1%) µg mg−1 of DNA additions. 499 

 500 
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3.5. Formation of allophane nano- and microaggregates and physical adsorption of DNA within 501 

pores  502 

During DNA adsorption on synthetic allophane, it was observed that chemical adsorption of 503 

DNA on allophane brought about further aggregation/complexation of allophane nanoaggregates 504 

simultaneously (Fig. 9) so that the size of allophane nanoaggregates increased to micron-sized 505 

aggregates (microaggregates). This phenomenon has been attributed to the chemical adsorption of 506 

allophane nanoaggregates on DNA strands, as described by Matsuura et al. (2013), followed by 507 

conjoining of these aggregates by the polymeric DNA, with porous allophane microaggregates 508 

formed as a result. The microaggregates comprised assemblages of allophane nanoaggregates with 509 

numerous spaces (pores) of both nano- and submicron scale. Consequently, DNA fragments could 510 

be readily enclosed during the formation of allophane microaggregates, or adsorbed within the 511 

nanopores between allophane spherules (i.e., within inter-spherule spaces) or within nano- or 512 

submicropores between allophane nanoaggregates (i.e., within inter-nanoaggregate spaces), 513 

effectively as a form of physical adsorption as noted earlier.  514 

 515 
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 516 

Fig. 9. Size distribution of allophane-DNA aggregates responding to gradually increasing additions 517 

of DNA. The 50-allophane was used for this set of experiments. The allophane-DNA aggregates 518 

(with differing amounts of DNA additives) were vigorously homogenized in a stirring unit, and 519 

hence are demonstrably stable, being unable to be broken down easily. The concentration of DNA 520 

added and the mean sizes of the allophane-DNA aggregates are reported alongside each histogram. 521 

 522 

The size of allophane-DNA clusters increased with the addition of DNA (Fig. 9). Allophane 523 

microaggregates could be up to 500 µm in diameter and the dominant size of such aggregates with 524 

high DNA loading (>4.4 µg DNA per mg allophane) onto synthetic allophane was 100−300 µm. 525 

Increasing the DNA adsorbed from 4.4 µg mg-1 to 8.5 µg mg-1 had no significant impact on the 526 

overall size distribution of aggregates, but the result showed a reduction in the volume of 527 
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nanoaggregates <100 µm in diameter and a predominance of microaggregates with a size range 528 

100−300 µm in diameter.  529 

The DNA adsorption isotherm on synthetic allophane (Fig. 3) reflected the fact that further 530 

adsorption became weak when adsorbed DNA was more than 6 µg mg-1 allophane (0.6%), which 531 

could be attributable to the saturation of the DNA chemisorption on the surface of allophane 532 

spherules and then physical adsorption of DNA in nano- or submicropores within and between 533 

allophane nanoaggregates. The DNA uptake by synthetic allophane eventually attained up to 34 µg 534 

mg-1 allophane (3.4%) whilst the allophane aggregates had continuously grown up to 500 µm in 535 

diameter and inter-nanoaggregate spaces had become saturated with DNA. Hence the proportion of 536 

chemically-adsorbed DNA to physically-adsorbed DNA is 6 to 28 (34 minus 6), indicating that 537 

~80% of DNA is adsorbed physically in nano- and submicropores.  538 

Oades and Waters (1991) showed that soil microaggregates are bound together into 539 

macroaggregates by organic matter in most soils, and later Six et al. (2000b) further demonstrated 540 

that macroaggregates sequester 1.65 times more carbon than microaggregates. Using an 541 

experimental approach earlier, Churchman and Tate (1987) showed that the stability of 542 

macroaggregates in allophanic soils on tephra is highly related to carbon content in such soils. 543 

Aggregates at nano- and micron scales have also been found to be crucial in helping to govern 544 

carbon sequestration in Andisols (Huygens et al., 2005; Asano and Wagai, 2014) in which the large 545 

allophane aggregates possess higher volumes of inter-nanoaggregate interstice and hence more 546 

room for the physical storage of carbon than in small aggregates. In Fig. 9 it is shown that allophane 547 

nanoaggregates could be assembled by DNA molecules acting as strong binding agents, and such 548 

aggregation has enabled much DNA to be adsorbed by the allophane microaggregates in the spaces 549 

(nano- and submicropores) between aggregates rather than just on the limited aluminol groups on 550 

allophane spherules  i.e., physical adsorption within and between allophane aggregates seems to 551 
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account for much more DNA sequestration than chemical adsorption directly on the surfaces of 552 

allophane spherules.  553 

It is therefore proposed that environmental DNA in Andisols or allophane-rich soils could be 554 

adsorbed by (1) allophane directly via chemisorption, (2) humic acid (or organic matter) covering 555 

on allophane and then attached to allophane indirectly, and (3) pores within and between allophane 556 

nanoaggregates (inter-spherule and inter-nanoaggregate spaces) via physical adsorption (Fig. 10), of 557 

which physical adsorption is considered to be the crucial mechanism allowing substantial 558 

environmental DNA to be sequestered in such soil materials because of the high porosity of 559 

allophane aggregates. The stability of the allophane-DNA complexes was noticeable because the 560 

allophane-DNA microaggregates could not be broken up by turbulent stirring, indicating that DNA 561 

(and hence organic matter as well in the natural soil system) would likely be well protected and 562 

stored within allophane aggregates. Natural humus-allophane aggregates in Andisols are similarly 563 

very stable (e.g. Goh, 1980, 2004; Nanzyo, 2002; Ugolini and Dahlgren, 2002; Matus et al., 2014). 564 

The pores at nano- or submicrometre scale between allophane spherules or within aggregates seem 565 

to be the main reservoir for DNA adsorption and probably a refuge for DNA because some of the 566 

pores are so small (~2−100 nm) that they are not accessible to enzymes or microbes.  567 

 568 
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 569 

Fig. 10. Illustration of proposed mechanisms for chemical and physical adsorption of DNA by 570 

nanocrystalline allophane spherules and allophane nanoaggregates: (A) direct chemical adsorption 571 

of DNA on allophane through the phosphate group of DNA; (B) indirect chemical adsorption of 572 

DNA on a covering of organic matter on allophane; and (C) physical adsorption of DNA in the 573 

spaces (nano- to submicropores) of allophane nanoaggregates and microaggregates (modified after 574 

Huang et al., 2014, p. 165, with kind permission of Springer). The natural DNA fragment is ~20 Å 575 

(2 nm) in diameter and the DNA grooves (spaces between helical strands) are 12−22 Å (1.2−2.2 576 

nm) wide.   577 
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Therefore, the formation of allophane aggregates and the physical adsorption of DNA within 578 

nanopores amidst allophane aggregates may be indicative of better preservation of environmental 579 

DNA in natural allophanic soil materials than in other (non-allophanic) mineral soils (Rawlence et 580 

al., 2014).  581 

 582 

3.6. Implications for carbon sequestration in Andisols 583 

The findings relating to DNA may also pertain to soil organic matter and organic carbon in 584 

that the porous and stable allophane aggregates potentially allow much organic carbon to be 585 

adsorbed physically, being encapsulated within the small spaces (pores), thereby leading to slow 586 

carbon turnover in Andisols (Parfitt et al., 2002; Parfitt, 2009; Baisden et al., 2010, 2013). 587 

Previously, the high organic carbon content of Andisols had been ascribed mainly to the very high 588 

SSA and the variable surface charge characteristics associated with allophane (e.g. Harsh, 2012; 589 

McDaniel et al., 2012), and to the strong propensity of allophane to form nanoaggregates up to 100 590 

nm in diameter that enable carbon to become stabilized and protected (e.g. Goh, 2004; Chevallier et 591 

al., 2010; Calabi-Floody et al., 2011; Matus et al., 2014). In some Andisols, carbon, mainly as 592 

humus, becomes stabilized through complexation and precipitation with Al (e.g. Percival et al., 593 

2000; Yuan et al., 2000; Nanzyo, 2002; Basile-Doelsch et al., 2005; Chevaliier et al., 2010; 594 

McDaniel et al., 2012; Takahashi and Dahlgren, 2016). However, the findings obtained here with 595 

respect to DNA  up to 80% of which was physically adsorbed (and presumably protected) on 596 

synthetic allophane  provide a mechanism to explain carbon sequestration more specifically in 597 

Andisols: a high proportion of organic carbon is encapsulated within myriads of small to tiny pores, 598 

effectively within a nanolabyrinth, both (1) amidst nanoaggregates of allophane spherules (inter-599 

spherule spaces), and (2) in pores between nanoaggregates (inter-nanoaggregate spaces) within 600 

microaggregates, of which the microaggregates possess higher volumes of interstitial space for 601 
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carbon adsorption than nanoaggregates. For the synthetic allophane  examined in this study, the 602 

dominant pore size of the inter-spherule spaces was ~3 nm (nanopores), and that of the inter-603 

nanoaggregate spaces (nano- to submicropores) was ~30 to 100 nm. For natural allophane, the 604 

equivalent pore dimensions within and between nanoaggregates were ~2 nm and ~50−500 nm 605 

(based on micrographs of natural allophane), respectively. Such sizes ranges amidst very stable 606 

aggregates (both nano- and microaggregates) provide natural ‘havens’ for organic carbon to be 607 

encapsulated more or less permanently, free from attack because the Al-rich allophane spherules 608 

encircling the nanopores are non-bioavailable to most microorganisms (because of Al toxicity), 609 

enzymes themselves may be adsorbed, microbes are deprived of phosphorus (because of strong P 610 

retention) (Tate and Theng, 1980; Ugolini and Dahlgren, 2002; Matus et al., 2014), and because the 611 

nanopores and their openings are both too small and too tortuous for enzymes and microbes to 612 

access.  613 

Using small angle X-ray scattering (SAXS), Chevallier et al. (2010) showed for Andisols in 614 

Martinique (French West Indies) that an increasingly tortuous nanopore network (defined as the 615 

extent of fractal range or cluster, /a, where  is the size of allophane aggregates and a is 3.5 nm, 616 

the mean size of natural allophane spherules) resulted in decreasing carbon bioavailability. A larger 617 

/a ratio indicates a more tortuous pore network. Similar research was undertaken by Woignier et 618 

al. (2008). Filimonova et al. (2011) used 129Xe nuclear magnetic resonance (NMR) spectroscopic 619 

studies of xenon gas adsorption of a non-allophanic Andisol (i.e. an Andisol dominated by Al- and 620 

Fe-humus complexes: Takahashi and Dahlgren, 2016) to show that its porous structure comprised 621 

interconnected micro- and mesopores formed by agglomerated nano-sized Al-rich clusters, the 622 

micropores, critically, being very narrow (~0.440.88 nm). In the current study, the synthetic 623 

allophane spherules were ~10−15 nm in diameter (mean size ~12.5 nm), and the allophane 624 

nanoaggregates were between ~50 and ~100 nm in diameter, and so it is estimated that the /a ratio 625 

is between 4 (50/12.5) and 8 (100/12.5).  Chevallier et al. (2010) reported that a ξ/a ratio of about 626 
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10 “implies the existence of a large tortuous labyrinth built of allophane particles” (p. 184). Thus, 627 

assuming the results for natural allophane apply to the synthetic allophane in the current study, then 628 

the /a ratios of ~4 to 8 imply that pore networks in the synthetic allophane nanoaggregates 629 

(without any added DNA) have at least a moderately high degree of tortuosity.  630 

Parallel conclusions have been reported previously in various studies that examined the 631 

nature of the relationship between minerals and organic carbon/organic matter in non-allophanic 632 

soils (e.g. Six et al., 2000a, 2000b; Lehmann et al., 2007; Baldock and Broos, 2012; Churchman 633 

and Lowe, 2012).  For example, Mayer and Xing (2001), Kaiser and Guggenberger (2003), and 634 

Chenu and Plante (2006) concluded that most organic matter was stabilized in soils by close 635 

associations with clays in very small microaggregates, either through adsorption or by entrapment 636 

(occlusion). Wan et al. (2007), using scanning transmission X-ray microscopy (STXM), showed 637 

that organic matter existed as distinct particles within microaggregates more typically than as 638 

coatings on minerals. And McCarthy et al. (2008), who used SAXS to directly observe pores and 639 

their constituents, found that most organic matter was held within pores, and that it was 640 

encapsulated, rather than adsorbed, by minerals. Consequently, the results of the current study 641 

relating to DNA adsorption on synthetic allophane strongly imply that such mechanisms of 642 

encapsulation of organic carbon within pores in nanoaggregates apply to allophanic soils including 643 

Andisols.  644 

In comparing the world’s soil orders based on Soil Taxonomy (with the exclusion of 645 

Histosols) (Soil Survey Staff, 1999), the foremost ability of Andisols to sequester carbon, and the 646 

primacy of allophane nanominerals rather than long-range-order and other crystalline clay minerals 647 

in affecting such sequestration, are therefore attributable largely to the very high fractal-scale 648 

porosity (at nano- and submicron scales) and stability of their constituent nanoaggregates and 649 

microaggregates. 650 
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4. Conclusions 651 

(1) The synthetic allophane spherules made in this study were uniformly 10−15 nm in 652 

diameter and with a SSA up to 374 m2 g-1. Generally, 1 mg of synthetic allophane could adsorb up 653 

to 34 µg of salmon-sperm DNA in total.  654 

(2) P XANES and IR spectra for salmon-sperm DNA-allophane complexes affirmed that the 655 

chemical adsorption of DNA by allophane is through its phosphate groups (direct chemical 656 

adsorption of DNA on allophane spherules). The DNA adsorption on allophane induced an 657 

alteration of the surface chemistry of allophane whereby the characteristic Si−O−Al stretching 658 

frequency of allophane shifted from 1020 cm-1 to 990 cm-1. This alteration and shift could be 659 

attributable to either the change of interatomic distances of the allophane wall or the precipitation of 660 

aluminium phosphates on the surface of allophane, or both.  661 

(3) Humic acid hampered the DNA adsorption capacity on synthetic allophane by occupying 662 

the active sites on allophane and suppressing the charge relocation between DNA and humic acid-663 

rich allophane. However, some ligands of humic acid bound to DNA chemically through its 664 

phosphate groups and DNA became attached to allophane spherules indirectly (indirect chemical 665 

adsorption on allophane).  666 

(4) The adsorptive sites on the surface of allophane spherules became saturated despite the 667 

addition of only small amounts of DNA (~2−6 µg mg-1 allophane), but much more DNA (up to 28 668 

µg mg-1, ~80% of the total DNA adsorbed) was able to be adsorbed by allophane physically (i.e., in 669 

nanopores and submicropores) when the porous allophane-DNA aggregates (including nano- and 670 

microaggregates) were formed. The aggregation of DNA and allophane spherules and great stability 671 

of such aggregates thus explain why allophanic soil materials are able to sequester much DNA, and 672 

hence slow the degradation of DNA in such materials.  673 
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(5) These findings relating to DNA very likely appertain to soil organic matter in that the 674 

stable, highly porous allophane nano- and microaggregates allow much organic matter and organic 675 

carbon (potentially up to ~80%) to be adsorbed physically. The carbon is effectively encapsulated 676 

and protected within a nanolabyrinthic network of nanopores (<100 nm) and submicropores 677 

(100−500 nm), enhanced because of the network’s high degree of tortuosity, thereby leading to the 678 

especially slow turnover of carbon in Andisols and other allophanic soils. 679 

 680 
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