627 research outputs found

    Evaluating Postfire Seeding Treatments Designed to Suppress Cheatgrass (Bromus tectorum) in a Ponderosa Pine Forest on the Colorado Plateau

    Get PDF
    The restoration of historical fuel conditions and fire regimes is one of the primary land management goals in the Shivwits Plateau region of northwestern Arizona. Fire is the primary tool used in this region to reduce fuel loads and shift landscapes back to historical conditions of a low intensity, 8- 15 year return interval, surface fire regime. However, the invasive plant cheatgrass has become the dominant understory vegetation and fuel type following initial fire treatments in many areas. There is significant concern that repeated burning at historically appropriate fire return intervals for ponderosa pine forest will benefit this invasive plant to the detriment of native species. There is additional concern that the high flammability of cheatgrass fuelbeds will lead to fire return intervals that are more frequent than occurred historically and that are prescribed in the agency fire management plans, potentially preventing recruitment of pine seedlings and leading to type conversion of native forests to alien grasslands. Federal land managers and research scientists have noted that cheatgrass does not typically cooccur with two of the dominant perennial grasses in the Shivwits plateau region, bottlebrush squirreltail (Elymus elymoides) and blue grama (Bouteloua gracilis). This suggests that these natives may be competing with and excluding the establishment of cheatgrass. If these species can be established in postfire landscapes, they may be able to pre-empt the establishment of cheatgrass and promote the restoration of native plant communities and natural fuel characteristics. This report provides results of an experimental seedings of these two perennial grasses. Seeding with or without raking had no detectable effects on any of the species or groups of species in this study as measured by: 1) the density, cover, and species diversity of standing vegetation during the first 5 post-treatment years; or 2) the density and species diversity of the soil seedbank during the first 3 post-treatment years. Blue grama had an overall low standing density and cover, and seedbank density, at the study site, whereas bottlebrush squirreltail had relatively high standing density and cover, and seedbank density, at least during some of the sampling years. Cheatgrass did not differ among treatments, including raked and unraked plots, and only increased from 1.1 seeds per 18 cubic cm of soil immediately following the fire in fall 2003 to 1.5 seeds by the fall of the third postfire year

    Optimal Signal Processing of Frequency-Stepped CW Radar Data

    Get PDF
    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed

    Gut Microbiome Diversity Is Associated with Sleep Physiology in Humans

    Get PDF
    The human gut microbiome can influence health through the brain-gut-microbiome axis. Growing evidence suggests that the gut microbiome can influence sleep quality. Previous studies that have examined sleep deprivation and the human gut microbiome have yielded conflicting results. A recent study found that sleep deprivation leads to changes in gut microbiome composition while a different study found that sleep deprivation does not lead to changes in gut microbiome. Accordingly, the relationship between sleep physiology and the gut microbiome remains unclear. To address this uncertainty, we used actigraphy to quantify sleep measures coupled with gut microbiome sampling to determine how the gut microbiome correlates with various measures of sleep physiology. We measured immune system biomarkers and carried out a neurobehavioral assessment as these variables might modify the relationship between sleep and gut microbiome composition. We found that total microbiome diversity was positively correlated with increased sleep efficiency and total sleep time, and was negatively correlated with wake after sleep onset. We found positive correlations between total microbiome diversity and interleukin-6, a cytokine previously noted for its effects on sleep. Analysis of microbiome composition revealed that within phyla richness of Bacteroidetes and Firmicutes were positively correlated with sleep efficiency, interleukin-6 concentrations and abstract thinking. Finally, we found that several taxa (Lachnospiraceae, Corynebacterium, and Blautia) were negatively correlated with sleep measures. Our findings initiate linkages between gut microbiome composition, sleep physiology, the immune system and cognition. They may lead to mechanisms to improve sleep through the manipulation of the gut microbiome

    Quantitative Chemically-Specific Coherent Diffractive Imaging of Buried Interfaces using a Tabletop EUV Nanoscope

    Full text link
    Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither optical microscopy nor atomic force microscopy can image the buried interfaces. Short wavelength (29 nm) high harmonic light can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Moreover, differences in the absolute reflectivity of the interfaces before and after coating reveal the formation of interstitial diffusion and oxidation layers at the Al-Cu and Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability for quantitative, chemically-specific imaging of buried structures, and the material evolution that occurs at these buried interfaces, compared with all other approaches.Comment: 12 pages, 8 figure

    Genetic relationships among temperament, immune function, and carcass merit

    Get PDF
    Cattle producers historically have selected for docile temperaments simply for management convenience because calmer animals are conducive to safe environments for their peers as well as their handlers. As many producers would acknowledge, there seems to be a relationship between temperament and health, and calmer cattle tend to frequent the working chute for treatment of disease less often. Positive correlations have been found in cattle between temperament traits (chute scores, pen scores, and chute exit velocities) and cortisol concentration in the blood, suggesting that more excitable cattle are easily stressed (Curley et al., 2006; Cooke et al., 2009). In addition, Curley et al. (2007) found that easily excitable animals sustain elevated cortisol concentrations for a longer duration and had greater pituitary and adrenal responses following a stressor than calm cattle. Temperamental cattle have significantly higher mean temperament responses at all points (Oliphint, 2006). Higher basal serum cortisol concentrations may suggest that easily excitable cattle are chronically stressed (Curley et al., 2007), possibly resulting in a compromised immune system, illness, and decreased fat and protein deposition. Common measures of cattle temperament are pen scores, chute scores, and exit velocities. Temperament appears to be moderately heritable, with estimates ranging from 0.15 to 0.44 (Burrow and Corbet, 2000; Kadel et al., 2006; Schrode and Hammack, 1971; Stricklin et al., 1980; Fordyce et al., 1988). If genetic correlations are found between temperament and production traits or immunological factors, they may aid cattle breeders in producing profitable cattle. Such relationships have been found between exit velocity and hot carcass weight (r = -0.54), exit velocity and marbling score (r = 0.10), exit velocity and yield grade (r = -0.22) (Nkrumah et al., 2007), and post-weaning weight gain and exit velocity (Weaber et al., 2006). Bovine respiratory disease (BRD) susceptibility has been estimated to be lowly heritable (Muggli-Cockett et al., 1992; Snowder et al., 2005, 2006, 2007; Schneider et al., 2008). This study was conducted to further investigate the genetic relationships between cattle temperament measured by chute score and exit velocity, immunological factors, and a range of economically relevant performance traits

    Genetic parameters estimated at receiving for circulating cortisol, immunoglobulin G, interleukin 8, and incidence of bovine respiratory disease in feedlot beef steers

    Get PDF
    Citation: Cockrum, R. R., Speidel, S. E., Salak-Johnson, J. L., Chase, C. C. L., Peel, R. K., Weaber, R. L., . . . Enns, R. M. (2016). Genetic parameters estimated at receiving for circulating cortisol, immunoglobulin G, interleukin 8, and incidence of bovine respiratory disease in feedlot beef steers. Journal of Animal Science, 94(7), 2770-2778. doi:10.2527/jas2015-0222Bovine respiratory disease complex (i.e., shipping fever and bacterial bronchopneumonia) is a multifaceted respiratory illness influenced by numerous environmental factors and microorganisms. Bovine respiratory disease (BRD) is just one component of BRD complex. Because BRD is moderately heritable, it may be possible to reduce the incidence of BRD through genetic selection. The objectives of this study were to determine the heritability and associative genetic relationships among immune system traits (i.e., cortisol, total IgG, IgG isotypes, and IL-8) in cattle monitored for BRD incidence. At an average of 83 d after weaning (219 d age and mean = 221.7 kg [SD 4.34]), crossbred Bos taurus steer calves (n = 2,869) were received at a commercial feedlot in southeastern Colorado over a 2-yr period. At receiving, jugular blood samples were collected at 212 (yr 1) and 226 d (yr 2) of age for immune trait analyses. The BRD phenotype was defined as a binomial variable (0 = no and 1 = yes) and compared with immune system traits measured at receiving (prior to illness onset). An animal identified as BRD positive exhibited ? 2 clinical signs (i.e., eye or nasal discharge, cough, lethargy, rapid breathing, acute interstitial pneumonia, or acute upper respiratory syndrome and/or a rectal temperature > 39.7°C). Heritability and genetic correlation estimates for categorical variable BRD, cortisol, IgG, IgG1, IgG2, and IL-8 were estimated from a sire model using ASREML. Heritability estimates were low to moderate for BRD (0.17 ± 0.08), cortisol (0.13 ± 0.05), IgG (0.15 ± 0.05), IgG1 (0.11 ± 0.05), IgG2 (0.24 ± 0.06), and IL-8 (0.30 ± 0.06). A moderate negative genetic correlation was determined between BRD and cortisol (rg = ?0.19 ± 0.32). Moderate positive correlations were found between BRD with IgG (0.42 ± 0.28), IgG1 (0.36 ± 0.32), and IL-8 (rg = 0.26 ± 0.26). Variation in the BRD phenotype and immune system traits suggested herd health improvement may be achieved through genetic selection. © 2016 American Society of Animal Science. All rights reserved
    corecore