98 research outputs found

    Early Clinical Detection of Pharmacologic Response in Insulin Action in a Nondiabetic Insulin-Resistant Population

    Get PDF
    AbstractBackgroundInsulin resistance heightens the risk for type 2 diabetes mellitus and cardiovascular disease. Amelioration of insulin resistance may reduce this risk. The thiazolidinedone class of insulin sensitizers improves insulin action in individuals with insulin-resistant diabetes and nondiabetic individuals. However, there are few reports on the time of onset of such effects independent of reversal of glucotoxicity.ObjectiveThe goal of our study was to test whether the thiazolidinedione pioglitazone has prominent early metabolic effects that can be detected in an obese, nondiabetic, insulin-resistant population.MethodsWe conducted a randomized, double-blind, placebo-controlled, parallel-group trial in men with nondiabetic insulin resistance using a hyperinsulinemic euglycemic clamp technique (at low and high doses of insulin at 10 and 40 mU/m2/min, respectively). The patients were given 30 mg daily oral pioglitazone or placebo for 28 days. Patients underwent a baseline clamp before initiation of treatment, and again at 14 and 28 days of treatment.ResultsCompared with placebo, under high-dose hyperinsulinemia, pioglitazone led to significant increases in glucose disposal rates (GDR) of 1.29 mg/kg/min (90% CI, 0.43–2.15; 39%; P=0.008) that were detectable at 2 weeks of treatment and persisted at 4 weeks of treatment. Under low-dose hyperinsulinemia, significant increases in GDR of 0.40 mg/kg/min (90% CI, 0.17–0.62; 95%; P=0.003) were observed at 4 weeks of treatment. These responses were accompanied by robust suppression of free fatty acids under hyperinsulinemic conditions, and by significant increases in circulating basal total adiponectin at 2 and 4 weeks of treatment.ConclusionsSignificant changes in insulin action across multiple insulin-sensitive tissues can be detected within 2 weeks of initiation of insulin-sensitizing therapy with pioglitazone in obese patients with nondiabetic insulin resistance. ClinicalTrials.gov identifier: NCT01115712

    Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH

    Get PDF
    Macrophage-mediated inflammation is critical in the pathogenesis of non-alcoholic steatohepatitis (NASH). Here, we describe that, with high-fat, high-sucrose-diet feeding, mature TIM

    Metabolic improvements following Roux-en-Y surgery assessed by solid meal test in subjects with short duration type 2 diabetes

    Get PDF
    BACKGROUND: Glucose homeostasis improves within days following Roux-en-Y gastric bypass (RYGB) surgery. The dynamic metabolic response to caloric intake following RYGB has been assessed using liquid mixed meal tolerance tests (MMTT). Few studies have evaluated the glycemic and hormonal response to a solid mixed meal in subjects with diabetes prior to, and within the first month following RYGB. METHODS: Seventeen women with type 2 diabetes of less than 5 years duration participated. Fasting measures of glucose homeostasis, lipids and gut hormones were obtained pre- and post-surgery. MMTT utilizing a solid 4 oz chocolate pudding performed pre-, 2 and 4 weeks post-surgery. Metabolic response to 4 and 2 oz MMTT assessed in five diabetic subjects not undergoing surgery. RESULTS: Significant reductions in fasting glucose and insulin at 3 days, and in fasting betatrophin, triglycerides and total cholesterol at 2 weeks post-surgery. Hepatic insulin clearance was greater at 3 days post-surgery. Subjects exhibited less hunger and greater feelings of fullness and satisfaction during the MMTT while consuming 52.9 ± 6.5% and 51.0 ± 6.5% of the meal at 2 and 4 weeks post-surgery respectively. At 2 weeks post-surgery, glucose and insulin response to MMTT were improved, with greater GLP-1 and PYY secretion. Improved response to solid MMTT not replicated by consumption of smaller pudding volume in diabetic non-surgical subjects. CONCLUSIONS: With a test meal of size and composition representative of the routine diet of post-RYGB subjects, improved glycemic and gut hormone responses occur which cannot be replicated by reducing the size of the MMTT in diabetic subjects not undergoing surgery

    High-dimensional analysis of the aging immune system: verification of age-associated differences in immune signaling responses in healthy donors.

    Get PDF
    BACKGROUND Single-cell network profiling (SCNP) is a multiparametric flow cytometry-based approach that simultaneously measures evoked signaling in multiple cell subsets. Previously, using the SCNP approach, age-associated immune signaling responses were identified in a cohort of 60 healthy donors. METHODS In the current study, a high-dimensional analysis of intracellular signaling was performed by measuring 24 signaling nodes in 7 distinct immune cell subsets within PBMCs in an independent cohort of 174 healthy donors [144 elderly (>65 yrs); 30 young (25-40 yrs)]. RESULTS Associations between age and 9 immune signaling responses identified in the previously published 60 donor cohort were confirmed in the current study. Furthermore, within the current study cohort, 48 additional immune signaling responses differed significantly between young and elderly donors. These associations spanned all profiled modulators and immune cell subsets. CONCLUSIONS These results demonstrate that SCNP, a systems-based approach, can capture the complexity of the cellular mechanisms underlying immunological aging. Further, the confirmation of age associations in an independent donor cohort supports the use of SCNP as a tool for identifying reproducible predictive biomarkers in areas such as vaccine response and response to cancer immunotherapies

    Steatosis drives monocyte-derived macrophage accumulation in human metabolic dysfunction-associated fatty liver disease

    Get PDF
    BACKGROUND & AIMS: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common complication of obesity with a hallmark feature of hepatic steatosis. Recent data from animal models of MAFLD have demonstrated substantial changes in macrophage composition in the fatty liver. In humans, the relationship between liver macrophage heterogeneity and liver steatosis is less clear. METHODS: Liver tissue from 21 participants was collected at time of bariatric surgery and analysed using flow cytometry, immunofluorescence, and H&E microscopy. Single-cell RNA sequencing was also conducted on a subset of samples (n = 3). Intrahepatic triglyceride content was assessed via MRI and tissue histology. Mouse models of hepatic steatosis were used to investigate observations made from human liver tissue. RESULTS: We observed variable degrees of liver steatosis with minimal fibrosis in our participants. Single-cell RNA sequencing revealed four macrophage clusters that exist in the human fatty liver encompassing Kupffer cells and monocyte-derived macrophages (MdMs). The genes expressed in these macrophage subsets were similar to those observed in mouse models of MAFLD. Hepatic CD14 CONCLUSIONS: The human liver in MAFLD contains macrophage subsets that align well with those that appear in mouse models of fatty liver disease. Recruited myeloid cells correlate well with the degree of liver steatosis in humans. MdMs appear to participate in lipid uptake during early stages of MALFD. IMPACT AND IMPLICATIONS: Metabolic dysfunction associated fatty liver disease (MAFLD) is extremely common; however, the early inflammatory responses that occur in human disease are not well understood. In this study, we investigated macrophage heterogeneity in human livers during early MAFLD and demonstrated that similar shifts in macrophage subsets occur in human disease that are similar to those seen in preclinical models. These findings are important as they establish a translational link between mouse and human models of disease, which is important for the development and testing of new therapeutic approaches for MAFLD

    AN EVENT STUDY OF THE DELISTING OF HOSPITALITY STOCKS IN THE UNITED STATES

    Get PDF
    Managers make important corporate strategic investment decisions such as mergers and acquisitions to improve the long-term competitiveness of their organizations; while at times they may be forced to manage for the short-term in order to satisfy the demands from the stock market.However, there is a lack of empirical research to examine the short- versus long-term view of management decision-making.This study analyses the mergers and acquisitions activities in the hospitality industry and particularly, investigates delisting behaviour of publicly traded hospitality firms and whether companies exhibit distinct patterns before delisting. Consolidation is prevalent in a maturing industry such as hospitality which currently faces a fiercely competitive global environment. The results of the study show that there is substantial difference between hospitality and non-hospitality stocks: not much information leakage in the delisting of hospitality stocks and a marked increase in institutional holdings with time but significant information leakage in non-hospitality stocks as reflected by positive and significant abnormal returns

    Calcineurin Selectively Docks with the Dynamin Ixb Splice Variant to Regulate Activity-dependent Bulk Endocytosis

    Get PDF
    Depolarization of nerve terminals stimulates rapid dephosphorylation of two isoforms of dynamin I (dynI), mediated by the calcium-dependent phosphatase calcineurin (CaN). Dephosphorylation at the major phosphorylation sites Ser-774/778 promotes a dynI-syndapin I interaction for a specific mode of synaptic vesicle endocytosis called activity-dependent bulk endocytosis (ADBE). DynI has two main splice variants at its extreme C terminus, long or short (dynIxa and dynIxb) varying only by 20 (xa) or 7 (xb) residues. Recombinant GST fusion proteins of dynIxa and dynIxb proline-rich domains (PRDs) were used to pull down interacting proteins from rat brain nerve terminals. Both bound equally to syndapin, but dynIxb PRD exclusively bound to the catalytic subunit of CaNA, which recruited CaNB. Binding of CaN was increased in the presence of calcium and was accompanied by further recruitment of calmodulin. Point mutations showed that the entire C terminus of dynIxb is a CaN docking site related to a conserved CaN docking motif (PXIXI(T/S)). This sequence is unique to dynIxb among all other dynamin variants or genes. Peptide mimetics of the dynIxb tail blocked CaN binding in vitro and selectively inhibited depolarization-evoked dynI dephosphorylation in nerve terminals but not of other dephosphins. Therefore, docking to dynIxb is required for the regulation of both dynI splice variants, yet it does not regulate the phosphorylation cycle of other dephosphins. The peptide blocked ADBE, but not clathrin-mediated endocytosis of synaptic vesicles. Our results indicate that Ca(2+) influx regulates assembly of a fully active CaN-calmodulin complex selectively on the tail of dynIxb and that the complex is recruited to sites of ADBE in nerve terminals

    Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506?

    Get PDF
    The drugs cyclosporine A (CsA) and tacrolimus (FK506) revolutionized organ transplantation. Both compounds are still widely used in the clinic as well as for basic research, even though they have dramatic side effects and modulate other pathways than calcineurin-NFATc, too. To answer the major open question - whether the adverse side effects are secondary to the actions of the drugs on the calcineurin-NFATc pathway - alternative inhibitors were developed. Ideal inhibitors should discriminate between the inhibition of (i) calcineurin and peptidyl-prolyl cis-trans isomerases (PPIases; the matchmaker proteins of CsA and FK506), (ii) calcineurin and the other Ser/Thr protein phosphatases, and (iii) NFATc and other transcription factors. In this review we summarize the current knowledge about novel inhibitors, synthesized or identified in the last decades, and focus on their mode of action, specificity, and biological effects
    • …
    corecore