153 research outputs found

    Race, Ethnicity, Income Concentration and 10-Year Change in Urban Greenness in the United States

    Get PDF
    Background: Cross-sectional studies suggest urban greenness is unequally distributed by neighborhood demographics. However, the extent to which inequalities in greenness have changed over time remains unknown. Methods: We estimated 2001 and 2011 greenness using Moderate-resolution Imaging Spectroradiometer (MODIS) satellite-derived normalized difference vegetative index (NDVI) in 59,483 urban census tracts in the contiguous U.S. We fit spatial error models to estimate the association between baseline census tract demographic composition in 2000 and (1) 2001 greenness and (2) change in greenness between 2001 and 2011. Results: In models adjusted for population density, climatic factors, housing tenure, and Index of Concentration at the Extremes for income (ICE), an SD increase in percent White residents (a 30% increase) in 2000 was associated with 0.021 (95% CI: 0.018, 0.023) higher 2001 NDVI. We observed a stepwise reduction in 2001 NDVI with increased concentration of poverty. Tracts with a higher proportion of Hispanic residents in 2000 lost a small, statistically significant amount of greenness between 2001 and 2011 while tracts with higher proportions of Whites experienced a small, statistically significant increase in greenness over the same period. Conclusions: Census tracts with a higher proportion of racial/ethnic minorities, compared to a higher proportion of White residents, had less greenness in 2001 and lost more greenness between 2001 and 2011. Policies are needed to increase greenness, a health-promoting neighborhood asset, in disadvantaged communities

    Spectroscopic Description of the E1 State of Mo Nitrogenase Based on Mo and Fe X‑ray Absorption and Mössbauer Studies

    Get PDF
    Mo nitrogenase (N2ase) utilizes a two-component protein system, the catalytic MoFe and its electron-transfer partner FeP, to reduce atmospheric dinitrogen (N2) to ammonia (NH3). The FeMo cofactor contained in the MoFe protein serves as the catalytic center for this reaction and has long inspired model chemistry oriented toward activating N2. This field of chemistry has relied heavily on the detailed characterization of how Mo N2ase accomplishes this feat. Understanding the reaction mechanism of Mo N2ase itself has presented one of the most challenging problems in bioinorganic chemistry because of the ephemeral nature of its catalytic intermediates, which are difficult, if not impossible, to singly isolate. This is further exacerbated by the near necessity of FeP to reduce native MoFe, rendering most traditional means of selective reduction inept. We have now investigated the first fundamental intermediate of the MoFe catalytic cycle, E1, as prepared both by low-flux turnover and radiolytic cryoreduction, using a combination of Mo Kα highenergy-resolution fluorescence detection and Fe K-edge partial-fluorescence-yield X-ray absorption spectroscopy techniques. The results demonstrate that the formation of this state is the result of an Fe-centered reduction and that Mo remains redoxinnocent. Furthermore, using Fe X-ray absorption and 57Fe Mössbauer spectroscopies, we correlate a previously reported unique species formed under cryoreducing conditions to the natively formed E1 state through annealing, demonstrating the viability of cryoreduction in studying the catalytic intermediates of MoFe

    Autonomic Dysfunction and Blood Pressure in Glaucoma Patients:The Lifelines Cohort Study

    Get PDF
    Purpose: We investigated relationship of glaucoma with measurements related to autonomic dysfunction, including heart rate variability (HRV) and blood pressure (BP). Methods: Glaucoma was defined using a questionnaire-based algorithm for 86,841 LifeLines Cohort Study participants. Baseline HRV (root mean square of successive differences [RMSSD]) was calculated from resting electrocardiograms; systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) were oscillometric-based measurements. We used a generalized linear mixed model, adjusted for age, age square, sex, body mass index, and familial relationships to assess the relationship of baseline HRV and BP (continuous and quartiles), hypertension, and antihypertensive medication with glaucoma at follow up (median, 3.8 years). Results: The odds ratio (OR) of glaucoma was 0.95 (95% confidence interval [CI], 0.92-0.99) per unit increase in log-transformed RMSSD (in ms), indicating that autonomous dysfunction (low HRV) is associated with a higher risk of glaucoma. Per 10-mm Hg increase in BP, we found ORs of 1.03 (95% CI, 1.01-1.05; P = 0.015) for SBP, 1.01 (95% CI, 0.97-1.05; P = 0.55) for DBP, 1.03 (95% CI, 1.00-1.06; P = 0.083) for MAP, and 1.04 (95% CI, 1.01-1.07; P = 0.006) for PP. The OR for the lowest versus highest RMSSD quartile was 1.15 (95% CI, 1.05-1.27; P = 0.003). The ORs for the highest versus second quartile were 1.09 (95% CI, 0.99-1.19; P = 0.091) for SBP and 1.13 (95% CI, 1.02-1.24; P = 0.015) for PP. Glaucoma was more common among hypertensives (OR, 1.25; 95% CI, 1.16-1.35; P < 0.001); among those using angiotensin-converting enzyme (ACE) inhibitors (OR, 1.35; 95% CI, 1.18-1.55; P < 0.001); and among those using calcium-channel blockers (OR, 1.19; 95% CI, 1.01-1.40; P = 0.039). Conclusions: Low HRV, high SBP, high PP, and hypertension were associated with glaucoma. Longitudinal studies may elucidate if autonomic dysregulation and high BP also predict glaucoma incidence

    The Oregon Health Insurance Experiment: Evidence from the First Year

    Get PDF
    In 2008, a group of uninsured low-income adults in Oregon was selected by lottery to be given the chance to apply for Medicaid. This lottery provides an opportunity to gauge the effects of expanding access to public health insurance on the health care use, financial strain, and health of low-income adults using a randomized controlled design. In the year after random assignment, the treatment group selected by the lottery was about 25 percentage points more likely to have insurance than the control group that was not selected. We find that in this first year, the treatment group had substantively and statistically significantly higher health care utilization (including primary and preventive care as well as hospitalizations), lower out-of-pocket medical expenditures and medical debt (including fewer bills sent to collection), and better self-reported physical and mental health than the control group.National Institutes of Health. Department of Health and Human ServicesCalifornia HealthCare FoundationJohn D. and Catherine T. MacArthur FoundationNational Institute on Aging (P30AG012810)National Institute on Aging (RC2AGO36631)National Institute on Aging (R01AG0345151)Robert Wood Johnson FoundationAlfred P. Sloan FoundationSmith Richardson FoundationUnited States. Social Security Administration (grant 5 RRC 08098400-03-00 to the National Bureau of Economic Research as part of the SSA Retirement Research Consortium)Centers for Medicare & Medicaid Services (U.S.

    Synergies between interstellar dust and heliospheric science with an Interstellar Probe

    Full text link
    We discuss the synergies between heliospheric and dust science, the open science questions, the technological endeavors and programmatic aspects that are important to maintain or develop in the decade to come. In particular, we illustrate how we can use interstellar dust in the solar system as a tracer for the (dynamic) heliosphere properties, and emphasize the fairly unexplored, but potentially important science question of the role of cosmic dust in heliospheric and astrospheric physics. We show that an Interstellar Probe mission with a dedicated dust suite would bring unprecedented advances to interstellar dust research, and can also contribute-through measuring dust - to heliospheric science. This can, in particular, be done well if we work in synergy with other missions inside the solar system, thereby using multiple vantage points in space to measure the dust as it `rolls' into the heliosphere. Such synergies between missions inside the solar system and far out are crucial for disentangling the spatially and temporally varying dust flow. Finally, we highlight the relevant instrumentation and its suitability for contributing to finding answers to the research questions.Comment: 18 pages, 7 Figures, 5 Tables. Originally submitted as white paper for the National Academies Decadal Survey for Solar and Space Physics 2024-203

    EarthFinder Probe Mission Concept Study: Characterizing nearby stellar exoplanet systems with Earth-mass analogs for future direct imaging

    Get PDF
    EarthFinder is a NASA Astrophysics Probe mission concept selected for study as input to the 2020 Astrophysics National Academies Decadal Survey. The EarthFinder concept is based on a dramatic shift in our understanding of how PRV measurements should be made. We propose a new paradigm which brings the high precision, high cadence domain of transit photometry as demonstrated by Kepler and TESS to the challenges of PRV measurements at the cm/s level. This new paradigm takes advantage of: 1) broad wavelength coverage from the UV to NIR which is only possible from space to minimize the effects of stellar activity; 2) extremely compact, highly stable, highly efficient spectrometers (R>150,000) which require the diffraction-limited imaging possible only from space over a broad wavelength range; 3) the revolution in laser-based wavelength standards to ensure cm/s precision over many years; 4) a high cadence observing program which minimizes sampling-induced period aliases; 5) exploiting the absolute flux stability from space for continuum normalization for unprecedented line-by-line analysis not possible from the ground; and 6) focusing on the bright stars which will be the targets of future imaging missions so that EarthFinder can use a ~1.5 m telescope.Comment: NASA Probe Mission concept white paper for 2020 Astrophysics National Academies Decadal Surve

    EarthFinder Probe Mission Concept Study: Characterizing nearby stellar exoplanet systems with Earth-mass analogs for future direct imaging

    Get PDF
    EarthFinder is a NASA Astrophysics Probe mission concept selected for study as input to the 2020 Astrophysics National Academies Decadal Survey. The EarthFinder concept is based on a dramatic shift in our understanding of how PRV measurements should be made. We propose a new paradigm which brings the high precision, high cadence domain of transit photometry as demonstrated by Kepler and TESS to the challenges of PRV measurements at the cm/s level. This new paradigm takes advantage of: 1) broad wavelength coverage from the UV to NIR which is only possible from space to minimize the effects of stellar activity; 2) extremely compact, highly stable, highly efficient spectrometers (R>150,000) which require the diffraction-limited imaging possible only from space over a broad wavelength range; 3) the revolution in laser-based wavelength standards to ensure cm/s precision over many years; 4) a high cadence observing program which minimizes sampling-induced period aliases; 5) exploiting the absolute flux stability from space for continuum normalization for unprecedented line-by-line analysis not possible from the ground; and 6) focusing on the bright stars which will be the targets of future imaging missions so that EarthFinder can use a ~1.5 m telescope
    corecore