816 research outputs found

    Measurement of fracture toughness of hydrided Zircaloy - 4

    Get PDF
    Zircaloy-4 is a zirconium alloy that will be used for construction of many of the core components in the replacement research reactor at Lucas Heights. The fracture toughness of the alloy and its radiation-induced reduction over the 40 year planned life of the reactor is an important mechanical property for this application. This study aims to simulate the radiation-induced reduction in fracture toughness by hydriding Zircaloy-4. A range of fracture toughnesses is required to calibrate the sub-size Charpy and small punch (SP) surveillance specimens that will be irradiated over the life of the reactor against standard J1C fracture toughness specimens. Pieces of Zircaloy-4 plate were hydrided in a vessel at a temperature of 520°C, at different pressures for either 10 or 22 hours. Final hydrogen concentrations between 25 wt% ppm and 380 wt% ppm hydrogen were obtained under gaseous atmosphere. The fracture toughness of the hydrided Zircaloy-4 was assessed using sub-size 2.5 mm-thick Charpy, three-point bend J1C and SP tests. The results were correlated to determine the relationship between the J-integral fracture toughness, Charpy impact energy and equivalent fracture strain (εqf) from the SP tests. It was found that as hydrogen concentration and hydride formation increased, the fracture toughness of the alloy generally decreased. The results show there to be a useful relationship between fracture toughness and εqf measured for the SP tests. © Institute of Materials Engineering Australasia Ltd - Materials Forum Volume 27 - Published 2004

    Widefield Spectral-Domain Optical Coherence Tomography Imaging of Peripheral Round Retinal Holes With or Without Retinal Detachment

    Get PDF
    PURPOSE: To describe the widefield spectral-domain optical coherence tomography features of peripheral round retinal holes, with or without associated retinal detachment (RD). METHODS: Retrospective, observational study of 28 eyes with peripheral round retinal holes, with and without RD. Patients underwent imaging with a widefield 50-degree spectral-domain optical coherence tomography (Heidelberg Engineering, Germany) and Optos ultra-widefield imaging systems (Optos, United Kingdom). RESULTS: Vitreous attachment at the site of the retinal hole was detected in 27/28 (96.4%) cases. Cases were split into three groups: RHs with RD (n = 12); RHs with subretinal fluid (n = 5), and flat RHs (n = 11), with minimal or no subretinal fluid. 91.6% retinal holes associated with subretinal fluid or RD had vitreous attachment at the site of the hole. Eighty percent had vitreous attachment at both edges of the retinal hole, in a U-shape configuration, which appeared to exert traction. By contrast, flat retinal holes had visible vitreous attachment only at one edge of the retinal hole in 45.4%. CONCLUSION: Vitreous attachment was commonly seen at the site of round retinal holes. Vitreous attachment at both edges of the retinal hole in a U-shape configuration was more commonly seen at holes associated with subretinal fluid or RD

    The illusion of competency versus the desirability of expertise: Seeking a common standard for support professions in sport

    Get PDF
    In this paper we examine and challenge the competency-based models which currently dominate accreditation and development systems in sport support disciplines, largely the sciences and coaching. Through consideration of exemplar shortcomings, the limitations of competency-based systems are presented as failing to cater for the complexity of decision making and the need for proactive experimentation essential to effective practice. To provide a better fit with the challenges of the various disciplines in their work with performers, an alternative approach is presented which focuses on the promotion, evaluation and elaboration of expertise. Such an approach resonates with important characteristics of professions, whilst also providing for the essential ‘shades of grey’ inherent in work with human participants. Key differences between the approaches are considered through exemplars of evaluation processes. The expertise-focused method, although inherently more complex, is seen as offering a less ambiguous and more positive route, both through more accurate representation of essential professional competence and through facilitation of future growth in proficiency and evolution of expertise in practice. Examples from the literature are also presented, offering further support for the practicalities of this approach

    A new tool for the chemical genetic investigation of the Plasmodium falciparum Pfnek-2 NIMA-related kinase

    Get PDF
    Background: Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. Results: Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. Conclusions: Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2. © 2016 The Author(s)

    Genome-wide association study of nevirapine hypersensitivity in a sub-Saharan African HIV-infected population

    Get PDF
    The initial GWAS was funded by the International Serious Adverse Events Consortium (iSAEC). The iSAEC is a non-profit organization dedicated to identifying and validating DNA variants useful in predicting the risk of drug-related serious adverse events. The Consortium brings together the pharmaceutical industry, regulatory authorities and academic centres to address clinical and scientific issues associated with the genetics of drug-related serious adverse events. The iSAEC’s current funding members include: Abbott, Amgen, AstraZeneca, Daiichi Sankyo, GlaxoSmithKline, Merck, Novartis, Pfizer, Takeda and the Wellcome Trust. Mas Chaponda was funded by a 3 year Wellcome Trust training fellowship WT078857MA administered through the University of Liverpool. Malawi-Liverpool-Wellcome Trust Clinical Research Programme is funded through a Core Programme Grant award from the Wellcome Trust. Munir Pirmohamed is a National Institute for Health Research Senior Investigator, and also wishes to thank the MRC Centre for Drug Safety Science for support. The DART study was supported by the UK Medical Research Council (grant number G0600344), the UK Department for International Development and the Rockefeller Foundation. Andrew P. Morris is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (grant number WT098017). Louise Y. Takeshita is funded by a PhD fellowship from CNPq (National Council for Scientific and Technological Development, Brazil). Panos Deloukas’ work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit which is supported and funded by the National Institute for Health Research

    AXIOM: advanced X-ray imaging of the magnetosphere

    Get PDF
    Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission
    corecore