122 research outputs found

    Experimental constraints on the crystallization of natrocarbonatitic lava flows

    Get PDF
    Natrocarbonatitic magmas are characterized by their extremely low viscosities and fast elemental diffusion, and as a consequence of this, their chemistry and crystallinity can change significantly during residence in shallow reservoirs or even due to cooling during lava flow emplacement. Here, we present the results of a series of crystallization experiments conducted at 1-atm confining pressure and in a temperature range between 630°C and 300°C. The experiments were set up to characterize the chemistry and growth processes of the phenocryst phases present in natrocarbonatites. The results are applicable to (1) processes occurring during residence in shallow magma reservoirs and/or (2) during lava flow emplacement. We show that during crystallization of natrocarbonatites at atmospheric pressure, gregoryite is the first mineral to crystallize at 630°C, followed by nyerereite at 595°C. Crystal size distributions of the gregoryites show that the crystals grow rapidly by textural coarsening (i.e., Ostwald ripening). As the crystallization is a continuous process at this pressure, the composition of the residual melt changes in response to the crystallization. However, the experiments also show that individual crystals completely reequilibrate with the changes in melt composition in as little time as <11min. We therefore conclude that crystallization and diffusion are extremely fast processes in the natrocarbonatitic system and that the measured chemical variations in phenocrysts from Oldoinyo Lengai can be explained by different cooling histories. Finally, we model the rheological control on the emplacement of highly crystallized natrocarbonatitic lavas at Oldoinyo Lenga

    The temporal evolution of chemical and physical properties of magmatic systems

    Get PDF
    Exactly 100 years ago the great Canadian-born petrologist N. L. Bowen published two seminal works on the chemical differentiation of magmas in which he posed the basis for a physico-chemical understanding of the fractionation of crystals from melts in molten rock. A subsequent century of research and technological advances has enhanced our understanding of the physics and chemistry of magmatic systems and their temporal evolution. The image of sub-volcanic magmatic systems has evolved greatly in that time, from a simple ‘boiling vat’ concept of molten rock in which bubbles, crystals and melt separate gravitationally to a recognition that magma vats are relatively rare and that most magmatic systems spend much of their lifetime in a partially molten, or mushy, state. Real magmatic systems appear to be organized into a series of storage regions periodically connected by feeding structures transferring magma (and heat) at different fluxes. Magma fluxes between the different portions of this plumbing system, and the variation of the chemical and physical properties of magma as it rises through the crust, exert essential controls on the eruptive modalities of volcanoes and the geochemistry of their products. This book presents a collection of contributions that use petrology, geochemistry, geochronology and numerical modelling to identify the processes operating at different depths within magmatic systems and to characterize the fluxes of magma between them

    Strain-induced magma degassing: insights from simple-shear experiments on bubble bearing melts

    Get PDF
    International audienceExperiments have been performed to determine the effect of deformation on degassing of bubble-bearing melts. Cylindrical specimens of phonolitic composition, initial water content of 1.5 wt.% and 2 vol.% bubbles, have been deformed in simple-shear (torsional configuration) in an internally heated Paterson-type pressure vessel at temperatures of 798-848 K, 100-180 MPa confining pressure and different final strains. Micro-structural analyses of the samples before and after deformation have been performed in two and three dimensions using optical microscopy, a nanotomography machine and synchrotron tomography. The water content of the glasses before and after deformation has been measured using Fourier Transform Infrared Spectroscopy (FTIR). In samples strained up to a total of γ ∼ 2 the bubbles record accurately the total strain, whereas at higher strains (γ ∼ 10) the bubbles become very flattened and elongate in the direction of shear. The residual water content of the glasses remains constant up to a strain of γ ∼ 2 and then decreases to about 0.2 wt.% at γ ∼ 10. Results show that strain enhances bubble coalescence and degassing even at low bubble volume-fractions. Noticeably, deformation produced a strongly water under-saturated melt. This suggests that degassing may occur at great depths in the volcanic conduit and may force the magma to become super-cooled early during ascent to the Earth's surface potentially contributing to the genesis of obsidian

    Deglaciation and glacial erosion: A joint control on magma productivity by continental unloading

    Get PDF
    Glacial-interglacial cycles affect the processes through which water and rocks are redistributed across the Earth's surface, thereby linking the solid Earth and climate dynamics. Regional and global scale studies suggest that continental lithospheric unloading due to ice melting during the transition to interglacials leads to increased continental magmatic, volcanic, and degassing activity. Such a climatic forcing on the melting of the Earth's interior, however, has always been evaluated regardless of continental unloading by glacial erosion, albeit the density of rock exceeds that of ice by approximately 3 times. Here we present and discuss numerical results involving synthetic but realistic topographies, ice caps, and glacial erosion rates suggesting that erosion may be as important as deglaciation in affecting continental unloading. Our study represents an additional step toward a more general understanding of the links between a changing climate, glacial processes, and the melting of the solid Earth

    Tempo of magma degassing and the genesis of porphyry copper deposits

    Get PDF
    Porphyry deposits are copper-rich orebodies formed by precipitation of metal sulphides from hydrothermal fluids released from magmatic intrusions that cooled at depth within the Earth's crust. Finding new porphyry deposits is essential because they are our largest source of copper and they also contain other strategic metals including gold and molybdenum. However, the discovery of giant porphyry deposits is hindered by a lack of understanding of the factors governing their size. Here, we use thermal modelling and statistical simulations to quantify the tempo and the chemistry of fluids released from cooling magmatic systems. We confirm that typical arc magmas produce fluids similar in composition to those that form porphyry deposits and conclude that the volume and duration of magmatic activity exert a first order control on the endowment (total mass of deposited copper) of economic porphyry copper deposits. Therefore, initial magma enrichment in copper and sulphur, although adding to the metallogenic potential, is not necessary to form a giant deposit. Our results link the respective durations of magmatic and hydrothermal activity from well-known large to supergiant deposits to their metal endowment. This novel approach can readily be implemented as an additional exploration tool that can help assess the economic potential of magmatic-hydrothermal systems

    Geological map of the Tocomar Basin (Puna Plateau, NW Argentina): Implication for the geothermal system investigation

    Get PDF
    This paper presents a detailed geological map at the 1:20,000 scale of the Tocomar basin in the Central Puna (north-western Argentina), which extends over an area of about 80 km2 and displays the spatial distribution of the Quaternary deposits and the structures that cover the Ordovician basement and the Tertiary sedimentary and volcanic units. The new dataset includes litho-facies descriptions, stratigraphic and structural data and new 234U/230Th ages for travertine rocks. The new reconstructed stratigraphic framework, along with the structural analysis, has revealed the complex evolution of a small extensional basin including a period of prolonged volcanic activity with different eruptive centres and styles. The geological map improves the knowledge of the geology of the Tocomar basin and the local interplay between orogen-parallel thrusts and orogen-oblique fault systems. This contribution represents a fundamental support for in depth research and also for encouraging geothermal exploration and exploitation in the Puna Plateau regionFil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Groppelli, Gianluca. CNR Istituto di Geologia Ambientale e Geoingegneria; ItaliaFil: Ahumada, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Aldega, Luca. Università degli Studi di Roma "La Sapienza"; ItaliaFil: Becchio, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Berardi, Gabriele. Università Roma Tre III; ItaliaFil: Bigi, Sabina. Università degli Studi di Roma "La Sapienza"; ItaliaFil: Caricchi. Chiara. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Corrado, Sveva. Università Roma Tre III; ItaliaFil: De Astis, Gianfilippo. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: De Benedetti, Arnaldo Angelo. Università Roma Tre III; ItaliaFil: Invernizzi, Chiara. Universita Degli Di Camerino; ItaliaFil: Norini, Gianluca. CNR Istituto di Geologia Ambientale e Geoingegneria; ItaliaFil: Soligo, Michele. Università Roma Tre III; ItaliaFil: Taviani, Sara. University of Milano-Bicocca; ItaliaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Giordano, Guido. CNR Istituto di Geologia Ambientale e Geoingegneria; Italia. Università Roma Tre III; Itali

    Geosciences Roadmap for Research Infrastructures 2025 - 2028 by the Swiss Geosciences Community

    Get PDF
    This roadmap is the product of a grassroots effort by the Swiss Geosciences community. It is the first of its kind, outlining an integrated approach to research facilities for the Swiss Geosciences. It spans the planning period 2025-2028. Swiss Geoscience is by its nature leading or highly in-volved in research on many of the major national and global challenges facing society such as climate change and meteorological extreme events, environmental pol-lution, mass movements (land- and rock-slides), earth-quakes and seismic hazards, global volcanic hazards, and energy and other natural resources. It is essential to under- stand the fundamentals of the whole Earth system to pro-vide scientific guidelines to politicians, stakeholders and society for these pressing issues. Here, we strive to gain efficiency and synergies through an integrative approach to the Earth sciences. The research activities of indivi- dual branches in geosciences were merged under the roof of the 'Integrated Swiss Geosciences'. The goal is to facilitate multidisciplinary synergies and to bundle efforts for large research infrastructural (RI) requirements, which will re-sult in better use of resources by merging sectorial acti- vities under four pillars. These pillars represent the four key RIs to be developed in a synergistic way to improve our understanding of whole-system processes and me- chanisms governing the geospheres and the interactions among their components. At the same time, the roadmap provides for the required transition to an infrastructure adhering to FAIR (findable, accessible, interoperable, and reusable) data principles by 2028.The geosciences as a whole do not primarily profit from a single large-scale research infrastructure investment, but they see their highest scientific potential for ground-break-ing new findings in joining forces in establishing state-of-the-art RI by bringing together diverse expertise for the benefit of the entire geosciences community. Hence, the recommendation of the geoscientific community to policy makers is to establish an integrative RI to support the ne- cessary breadth of geosciences in their endeavor to ad-dress the Earth system across the breadth of both temporal and spatial scales. It is also imperative to include suffi-cient and adequately qualified personnel in all large RIs. This is best achieved by fostering centers of excellence in atmospheric, environmental, surface processes, and deep Earth projects, under the roof of the 'Integrated Swiss Geosciences'. This will provide support to Swiss geo-sciences to maintain their long standing and internatio- nally well-recognized tradition of observation, monitor-ing, modelling and understanding of geosciences process-es in mountainous environments such as the Alps and beyond
    corecore