39 research outputs found

    Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics

    Get PDF
    Following the pioneering observations with COBE in the early 1990s, studies of the cosmic microwave background (CMB) have focused on temperature and polarization anisotropies. CMB spectral distortions - tiny departures of the CMB energy spectrum from that of a perfect blackbody - provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoretical foundation of spectral distortions has seen major advances in recent years, which highlight the immense potential of this emerging field. Spectral distortions probe a fundamental property of the Universe - its thermal history - thereby providing additional insight into processes within the cosmological standard model (CSM) as well as new physics beyond. Spectral distortions are an important tool for understanding inflation and the nature of dark matter. They shed new light on the physics of recombination and reionization, both prominent stages in the evolution of our Universe, and furnish critical information on baryonic feedback processes, in addition to probing primordial correlation functions at scales inaccessible to other tracers. In principle the range of signals is vast: many orders of magnitude of discovery space could be explored by detailed observations of the CMB energy spectrum. Several CSM signals are predicted and provide clear experimental targets, some of which are already observable with present-day technology. Confirmation of these signals would extend the reach of the CSM by orders of magnitude in physical scale as the Universe evolves from the initial stages to its present form. The absence of these signals would pose a huge theoretical challenge, immediately pointing to new physics.Comment: Astro2020 Science White Paper, 5 pages text, 13 pages in total, 3 Figures, minor update to reference

    Exploring Cosmic Origins with CORE: Survey requirements and mission design

    Get PDF
    Future observations of cosmic microwave background (CMB) polarisation havethe potential to answer some of the most fundamental questions of modernphysics and cosmology. In this paper, we list the requirements for a future CMBpolarisation survey addressing these scientific objectives, and discuss thedesign drivers of the CORE space mission proposed to ESA in answer to the "M5"call for a medium-sized mission. The rationale and options, and themethodologies used to assess the mission's performance, are of interest toother future CMB mission design studies. CORE is designed as a near-ultimateCMB polarisation mission which, for optimal complementarity with ground-basedobservations, will perform the observations that are known to be essential toCMB polarisation scienceand cannot be obtained by any other means than adedicated space mission

    Exploring Cosmic Origins with CORE: Cosmological Parameters

    Get PDF
    We forecast the main cosmological parameter constraints achievable with theCORE space mission which is dedicated to mapping the polarisation of the CosmicMicrowave Background (CMB). CORE was recently submitted in response to ESA'sfifth call for medium-sized mission proposals (M5). Here we report the resultsfrom our pre-submission study of the impact of various instrumental options, inparticular the telescope size and sensitivity level, and review the great,transformative potential of the mission as proposed. Specifically, we assessthe impact on a broad range of fundamental parameters of our Universe as afunction of the expected CMB characteristics, with other papers in the seriesfocusing on controlling astrophysical and instrumental residual systematics. Inthis paper, we assume that only a few central CORE frequency channels areusable for our purpose, all others being devoted to the cleaning ofastrophysical contaminants. On the theoretical side, we assume LCDM as ourgeneral framework and quantify the improvement provided by CORE over thecurrent constraints from the Planck 2015 release. We also study the jointsensitivity of CORE and of future Baryon Acoustic Oscillation and Large ScaleStructure experiments like DESI and Euclid. Specific constraints on the physicsof inflation are presented in another paper of the series. In addition to thesix parameters of the base LCDM, which describe the matter content of aspatially flat universe with adiabatic and scalar primordial fluctuations frominflation, we derive the precision achievable on parameters like thosedescribing curvature, neutrino physics, extra light relics, primordial heliumabundance, dark matter annihilation, recombination physics, variation offundamental constants, dark energy, modified gravity, reionization and cosmicbirefringence. (ABRIDGED

    The observed galaxy bispectrum from single-field inflation in the squeezed limit

    Get PDF
    Using the consistency relation in Fourier space, we derive the observed galaxy bispectrum from single- eld in ation in the squeezed limit, in which one of the three modes has a wavelength much longer than the other two. This provides a non-trivial check of the full computation of the bispectrum based on second-order cosmological perturbation theory in this limit. We show that gauge modes need to be carefully removed in the second-order cosmological perturbations in order to calculate the observed galaxy bispectrum in the squeezed limit. We then give an estimate of the e ective non- Gaussianity due to general-relativistic lightcone e ects that could mimic a primordial non-Gaussian signal

    Exploring cosmic origins with CORE: Cosmological parameters

    Get PDF
    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA’s fifth call for mediumsized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as ∌ 107 as compared to Planck 2015, and 105 with respect to Planck 2015 + future BAO measurements

    Exploring cosmic origins with CORE: Survey requirements and mission design

    Get PDF
    Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology. In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the "M5" call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation scienceand cannot be obtained by any other means than a dedicated space mission.Comment: 79 pages, 14 figure

    Graviton non-Gaussianities and parity violation in the EFT of inflation

    No full text
    We study graviton non-Gaussianities in the EFT of Inflation. At leading (second) order in derivatives, the graviton bispectrum is fixed by Einstein gravity. There are only two contributions at third order. One of them breaks parity. They come from operators that directly involve the foliation: we then expect sizable non-Gaussianities in three-point functions involving both gravitons and scalars. However, we show that at leading order in slow roll the parity-odd operator does not modify these mixed correlators. We then identify the operators that can affect the graviton bispectrum at fourth order in derivatives. There are two operators that preserve parity. We show that one gives a scalar-tensor-tensor three-point function larger than the one computed in Maldacena, 2003 [1] if M2PAs/Λ2 >> 1 (where Λ is the scale suppressing this operator and As the amplitude of the scalar power spectrum). There are only two parity-odd operators at this order in derivatives

    Compensated isocurvature perturbations in the galaxy power spectrum

    No full text
    We investigate the potential of the galaxy power spectrum to constrain compensated isocurvature perturbations (CIPs), primordial fluctuations in the baryon density that are compensated by fluctuations in CDM density to ensure an unperturbed total matter density. We show that CIPs contribute to the galaxy overdensity at linear order, and if they are close to scale-invariant, their effects are nearly perfectly degenerate with the local PNG parameter fNL if they correlate with the adiabatic perturbations. This degeneracy can however be broken by analyzing multiple galaxy samples with different bias parameters, or by taking CMB priors on fNL into account. Parametrizing the amplitude of the CIP power spectrum as Pσσ = A2PRR(where PRR is the adiabatic power spectrum) we find, for a number of fiducial galaxy samples in a simplified forecast setup, that constraints on A, relative to those on fNL, of order σA/σfNL ≈ 1−2 are achievable for CIPs correlated with adiabatic perturbations, and σA/σfNL ≈ 5 for the uncorrelated case. These values are independent of survey volume, and suggest that current galaxy data are already able to improve significantly on the tightest existing constraints on CIPs from the CMB. Future galaxy surveys that aim to achieve σfNL ~ 1 have the potential to place even stronger bounds on CIPs
    corecore