2,319 research outputs found

    R. F. Arnold Madáchról

    Get PDF

    The psychological burden of an initially unexplained illness: patients with sternocostoclavicular hyperostosis before and after delayed diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sternocostoclavicular hyperostosis (SCCH) is a rare, debilitating, chronic inflammatory disorder of the anterior chest wall due to a chronic sterile osteomyelitis of unknown origin. SCCH is largely underdiagnosed and often misdiagnosed. In individual cases it can remain unrecognized for years. The purpose of this study is twofold. Firstly, to evaluate the psychological condition of SCCH patients, both in the sometimes quite extended pre-diagnostic period between first manifestations and confirmed diagnosis of the disease, and in the current situation. Secondly, to investigate the relationships between the pre-diagnostic and the current psychological conditions of confirmed SCCH patients.</p> <p>Methods</p> <p>Structured interviews were held with 52 confirmed SCCH patients. Questionnaires were included to assess posttraumatic stress symptoms, social support, aspects of pain, illness perceptions, self-reported health status, and quality of life.</p> <p>Results</p> <p>SCCH patients reported stronger posttraumatic stress symptoms, more unfavorable illness perceptions, lower health status, and poorer quality of life than healthy individuals and patients with other diseases or traumatic experiences. Psychological distress in the pre-diagnostic period was associated with unfavorable conditions in the current situation.</p> <p>Conclusion</p> <p>SCCH is an illness with serious psychological consequences. Psychological monitoring of patients with unexplained complaints is recommended as long as a diagnosis has not been reached.</p

    Invasion speeds for structured populations in fluctuating environments

    Get PDF
    We live in a time where climate models predict future increases in environmental variability and biological invasions are becoming increasingly frequent. A key to developing effective responses to biological invasions in increasingly variable environments will be estimates of their rates of spatial spread and the associated uncertainty of these estimates. Using stochastic, stage-structured, integro-difference equation models, we show analytically that invasion speeds are asymptotically normally distributed with a variance that decreases in time. We apply our methods to a simple juvenile-adult model with stochastic variation in reproduction and an illustrative example with published data for the perennial herb, \emph{Calathea ovandensis}. These examples buttressed by additional analysis reveal that increased variability in vital rates simultaneously slow down invasions yet generate greater uncertainty about rates of spatial spread. Moreover, while temporal autocorrelations in vital rates inflate variability in invasion speeds, the effect of these autocorrelations on the average invasion speed can be positive or negative depending on life history traits and how well vital rates ``remember'' the past

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Study of 2 beta-decay of Mo-100 and Se-82 using the NEMO3 detector

    Get PDF
    After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T-1/2 > 3.1 x 10(23) y, 90% CL) and Se-82 (T-1/2 > 1.4 x 10(23) y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: 1.4 x 10(22) y (90% CL) for Mo-100 and T-1/2 > 1.2 x 10(22) y (90% CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are < (0.5-0.9) x 10(- 4) and <(0.7-1.6) x 10(- 4). Two-neutrino 2beta-decay half-lives have been measured with a high accuracy, (T1/2Mo)-Mo-100 = [7.68 +/- 0.02(stat) +/- 0.54(syst)] x 10(18) y and (T1/2Se)-Se-82 = [10.3 +/- 0.3(stat) +/- 0.7(syst)] x 10(19) y. (C) 2004 MAIK "Nauka/Interperiodica"

    A multi-dating approach to age-modelling long continental records: The 135 ka El Cañizar de Villarquemado sequence (NE Spain)

    Get PDF
    We present the multidisciplinary dating approach - including radiocarbon, Uranium/Thorium series (U/Th), paleomagnetism, single-grain Optical Stimulated Luminescence (OSL), Infrared Stimulated Luminescence (IRSL) and tephrochronology - used for the development of an age model for the Cañizar de Villarquemado sequence (VIL) for the last ca. 135 ka. We describe the protocols used for each technique and discuss the positive and negative results, as well as their implications for interpreting the VIL sequence and for dating similar terrestrial records. In spite of the negative results of some techniques, particularly due to the absence of adequate sample material or inaccurate analytical precision, the multi-technique strategy employed here is essential to maximize the chances of obtaining robust age models in terrestrial sequences. The final Bayesian age model for VIL sequence includes 16 AMS 14C ages, 9 OSL ages and 5 previously published IRSL ages, and the accuracy and resolution of the model are improved by incorporating information related to changes in accumulation rate, as revealed by detailed sedimentological analyses. The main paleohydrological and vegetation changes in the sequence are coherent with global Marine Isotope Stage (MIS) 6 to 1 transitions since the penultimate Termination, although some regional idiosyncrasies are evident, such as higher moisture variability than expected, an abrupt inception of the last glacial cycle and a resilient response of vegetation in Mediterranean continental Iberia in both Terminations
    corecore