
Theor Ecol (2011) 4:423–434
DOI 10.1007/s12080-010-0098-5

ORIGINAL PAPER

Invasion speeds for structured populations
in fluctuating environments

Sebastian J. Schreiber · Maureen E. Ryan

Received: 11 June 2010 / Accepted: 23 September 2010 / Published online: 13 October 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We live in a time where climate models pre-
dict future increases in environmental variability and
biological invasions are becoming increasingly fre-
quent. A key to developing effective responses to bio-
logical invasions in increasingly variable environments
will be estimates of their rates of spatial spread and
the associated uncertainty of these estimates. Using
stochastic, stage-structured, integrodifference equation
models, we show analytically that invasion speeds are
asymptotically normally distributed with a variance that
decreases in time. We apply our methods to a simple
juvenile–adult model with stochastic variation in re-
production and an illustrative example with published
data for the perennial herb, Calathea ovandensis. These
examples buttressed by additional analysis reveal that
increased variability in vital rates simultaneously slow
down invasions yet generate greater uncertainty about
rates of spatial spread. Moreover, while temporal auto-
correlations in vital rates inflate variability in inva-
sion speeds, the effect of these autocorrelations on the
average invasion speed can be positive or negative
depending on life history traits and how well vital rates
“remember” the past.
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Introduction

Anthropogenic forces are changing the temporal distri-
bution of environmental fluctuations and accelerating
the rate at which species are being introduced into
nonnative habitat. General circulation models predict
increased variability in temperatures and precipitation,
and these changes are likely to increase variability
in vital rates of many species (Easterling et al. 2000;
Tebaldi et al. 2006; Boyce et al. 2006). Alternatively,
human activities such as agriculture, recreation, and
transportation are spreading species beyond their natu-
ral dispersal barriers (Elton 1958; Kolar and Lodge
2001). While most of these accidental or intentional in-
troductions fail, the successful invaders can have devas-
tating impacts on human health and native biodiversity
(Kolar and Lodge 2001). To manage these impacts, it is
essential to understand the rate of range expansion—
the invasion speed—of these invaders. Here, we bring
together the theory of stochastic demography and inva-
sion speeds to provide a general framework to estimate
invasion speeds for structured populations in a variable
environment.

Stochastic demography is concerned with under-
standing population growth and distribution when vital
rates vary in time due to stochastic fluctuations in
environmental variables (Boyce et al. 2006). In their
simplest guise, models of stochastic demography are
the form nt+1 = Atnt where nt is the vector of popu-
lation abundances in the different stages at time t
and At is a projection matrix whose entries describe
fluxes between stages due to combinations of growth,
survivorship, and reproduction. These models play a
critical role in identifying to what extent variation
in vital rates alter the stochastic growth rate of a
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population (Tuljapurkar 1990; Tuljapurkar et al. 2003;
Haridas and Tuljapurkar 2005; Morris et al. 2008).
For example, Morris et al. (2008) analyzed multiyear
demographic data for 36 plant and animal species
and found that the stochastic growth rate of short-
lived species (insects, annual plants, and algae) are
more negatively affected by increased variation in vital
rates than longer-lived species (perennial plants, birds,
ungulates). Correlations between vital rates within a
year or autocorrelations in vital rates in successive years
can significantly effect stochastic growth rates. Analytic
approximations imply that negative correlations be-
tween vital rates can buffer the effects of demographic
stochasticity and thereby increase stochastic growth
rates (Tuljapurkar 1990; Boyce et al. 2006). In contrast,
temporal autocorrelations can increase or decrease sto-
chastic growth rates, and increases in these autocorrela-
tions can have larger impacts on growth than increases
in inter-annual variability of vital rates (Tuljapurkar
1990; Tuljapurkar and Haridas 2006).

For populations not experiencing an Allee effect, a
positive growth rate at low densities is necessary for
establishment and range expansion. An important class
of models for predicting rates of range expansion are
integrodifference equation (IDE) models (Kot et al.
1996) in which a dispersal kernel describes the like-
lihoods that individuals move between locations. For
diffusive movement, this kernel is a Gaussian and the
rate of spread equals 2

√
rD where D is the diffusion

rate and r is the intrinsic rate of growth of the popu-
lation (Kot et al. 1996), the same rate of spread first
derived by Fisher (1937) for reaction–diffusion equa-
tions. While this estimate of rate of spread has been
applied to many species (Hengeveld 1994), field esti-
mates of dispersal kernels typically are leptokurtic and
not Gaussian (Kot et al. 1996), and consequently, this
earlier work may underestimate invasion speeds. Using
stochastic counterparts to these IDE models, Neubert
et al. (2000) showed that serially uncorrelated, sto-
chastic fluctuations generate normally distributed in-
vasion speeds whose variance decays to zero. Hence,
invasion speeds may exhibit unpredictable transients in
fluctuating environments. On the other hand, Neubert
and Caswell (2000) developed methods to estimate
invasion speeds for stage-structured IDE models that
have been invaluable for identifying how stage-specific
vital rates constrain rates of spatial spread (Caswell
et al. 2003; Jacquemyn et al. 2005; Jongejans et al.
2008). However, the dual effects of demographic and
temporal heterogeneity on rates of range expansion
remains to be understood (see, however, Weinberger
2002; de Camino-Beck and Lewis 2009).

Here, we provide a framework for analyzing the
simultaneous effects of environmental fluctuations and
demographic structure on the spread speed of inva-
sions. Applying this framework to two examples, we
examine how the magnitude of environmental variabil-
ity and temporal autocorrelations influence the rate of
spatial spread and the uncertainty in predicting this
rate. Readers primarily interested in these applications
can go directly to the examples section. To develop the
framework, we begin by reviewing the work of Neubert
and Caswell (2000) on spatial spread in constant envi-
ronments. We extend these models to allow for tem-
poral variation in the projection matrices and dispersal
kernels and provide a formula for asymptotic invasion
speeds and normal approximations that describe the
variation in these invasion speeds over finite time hori-
zons. Caswell et al. (2010), in an accompanying paper,
provide methods for estimating the sensitivity of the
asymptotic invasion speeds to parameter estimates.

Constant environments

Neubert and Caswell (2000) analyzed invasion speeds
for IDE models for stage-structured populations in con-
stant environments. These models consider structured
populations living on a continuous one-dimensional
habitat and consisting of m stages where ni

t(x) is
the density of stage i at time t in location x. Let
bij(n1(x), . . . , nm(x)) be the contribution of stage j in-
dividuals to stage i individuals at location x. The bijs
simultaneously account for reproduction, growth, and
survival. Let kij(x) be the probability density function
for the displacement x moved by an individual transi-
tioning from stage j to i. For sedentary transitions, kij(x)

is a delta-function that puts all of its mass at 0. Under
these assumptions, the dynamics of the population are
given by

ni
t+1(x) =

∫ ∞

−∞

m∑
j=1

kij(x− y)bij(n1
t (y), . . . , nm

t (y)
)
n j

t (y) dy

To simplify the notation, let nt(x) = (n1
t (x), . . . , nm

t (x))′
where ′ denotes transpose be the vector of population
abundances at time t and location x. Let B(nt(x)) and
K(x) denote the m × m matrices with entries bij(nt(x))

and kij(x), respectively. With this notation, we get the
simplified equation

nt+1(x) =
∫ ∞

−∞

[
K(x − y) ◦ B(nt(y))

]
nt(y) dy (1)

where ◦ denotes the Hadamard product, i.e., compo-
nent wise multiplication (Horn and Johnson 1990).
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When the population is unstructured (i.e., m = 1),
model 1 has traveling wave solutions that maintain a
fixed shape in space and move at a constant speed.
If the growth function b(n)n increases with population
density, b(n) is decreasing (i.e., no Allee effect), and
the dispersal kernel possesses a moment-generating
function m(s) = ∫ ∞

−∞ k(x)esx dx for some interval −ŝ <

s < ŝ around zero, then the traveling wave moves at a
speed of

c∗ = min
0<s<ŝ

1

s
ln

[
b(0)m(s)

]
.

Populations introduced into a finite region of space may
spread initially faster or slower than c∗. However, in
the long term, their rate of spatial spread approaches c∗
and the shape of their spatial distribution approaches
the shape of a traveling wave solution (Weinberger
1982). Hence, the long-term rate of spatial spread
is determined by the linearization of the population
dynamics (i.e., b(n)n ≈ b(0)n for small n) and the dis-
persal kernel. More generally, the linearization conjec-
ture states that the speed of invasion for a nonlinear
model is governed by its linearization at low population
densities, as long as there are no Allee effects and
no long-distance density dependence. This conjecture
is supported extensively by theory (Weinberger 2002;
Weinberger et al. 2002) and numerical simulations.

Relying on the linearization conjecture, Neubert
and Caswell (2000) derived a formula for traveling
wave speeds for structured populations. This deriva-
tion makes four assumptions: (1) the matrices B(n) are
nonnegative and primitive, (2) A = B(0) has a domi-
nant eigenvalue ρ(A) that is greater than one, (3) there
is negative density dependence, i.e., B(n) ≤ An for all
n ≥ 0 where inequalities are taken componentwise, and
(4) the kernels kij(x) have moment generating functions
mij(s) defined on some maximal interval −ŝ ≤ s < ŝ
around zero. As in the unstructured case, this final
assumption implies that the dispersal kernel’s tails
are exponentially bounded. Without this additional
assumption, spatial spread may continually acceler-
ate (Kot et al. 1996). Under these assumptions, Neubert
and Caswell (2000) showed the asymptotic wave speed
is given by

c∗ = min
0<s<ŝ

1

s
log ρ(A ◦ M(s)) (2)

where M(s) is the matrix of moment generating func-
tions mij(s).

Fluctuating environments

To account for temporal variation in environmental
conditions and dispersal rates, we allow Bt(n) and Kt(x)

to depend on time. In which case,

nt+1(x) =
∫ ∞

−∞

[
Kt(x − y) ◦ Bt(nt(y))

]
nt(y) dy (3)

In order to make use of the linearization conjecture,
we place four assumptions on Eq. 3. First, the popu-
lations exhibit negative density dependence in which
case At := Bt(0) ≤ Bt(n) for all n ≥ 0. Second, there
exists T > 0 such that AT . . . A1 has all positive entries
with probability one. This assumption ensures that the
long-term growth rate and stage distribution of the
linearized population dynamics do not depend on initial
conditions. Third, there exists a ŝ > 0 such that the ker-
nels kij

t (x) have moment generating functions mij
t (s) =∫ ∞

−∞ kij
t (x)esxdx defined on the open interval −ŝ < s < ŝ.

We always choose ŝ to be the maximum of these
values. To state our fourth assumption, we combine
the information about dispersal and demography into
a single matrix Ht(s) = Mt(s) ◦ At where Mt(s) is the
moment generation matrix with entries mij

t (s). Equiva-
lently, Ht(s) is the transformation

∫ ∞
−∞ Kt(x) ◦ Atesxdx

of the demography–dispersal kernel Kt(x) ◦ At. For our
fourth assumption, we assume that the sequence of
matrices, H0(s), H1(s), . . . , are stationary and ergodic:
the statistical properties of Ht(s) do not change over
time, and long-term temporal averages are indepen-
dent of the initial state. This assumption encompasses
many models of environmental fluctuations includ-
ing periodic, quasi-periodic, irreducible Markovian,
and autoregressive models. If we have appropriate
finite expectations (i.e., E[max{ln ‖Ht(s)‖, 0}] < ∞ for
all 0 ≤ s < ŝ), then the random version of the Perron–
Frobenius theorem (Arnold et al. 1994) implies that for
any n > 0 and w > 0 (i.e., all components are nonnega-
tive and at least one is positive)

lim
t→∞

1

t
ln〈Ht−1(s) . . . H0(s)n, w〉 = γ (s)

with probability one (4)

where γ (s) is the dominant Lyapunov exponent asso-
ciated with this random product of matrices and 〈·, ·〉
denotes the standard Euclidean inner product. When
s = 0 and w = (1, . . . , 1)′, this Lyapunov exponent

γ (0) = lim
t→∞

1

t
ln〈At−1(s) . . . A0(s)n, w〉

describes the growth rate of the total population size
when rare (Tuljapurkar 1990). Since an invasion can
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only proceed if the population has the capacity to ex-
hibit growth, our final assumption is that γ (0) > 0.

When demographic or dispersal rates vary in time,
the rate of spatial spread will vary in time. To quantify
this rate of spread, assume there is a weighting w =
(w1, . . . , wk) of the different stages and the popula-
tion is observable whenever its weighted abundance
〈nt(x), w〉 = ∑

i ni
t(x)wi is above a critical threshold nc.

At time t, let Xt denote the location furthest from
the invasion’s origin at which the weighted population
abundance is above this threshold, i.e., 〈nt(s), w〉 ≥ nc.
The average speed Ct of the invasion by time t is given
by |Xt−x0|

t where x0 is the initial release site of the pop-
ulation. In Appendix 1, we show that with probability
one, |Xt−x0|

t is asymptotically bounded above by

c∗ = min
0<s<ŝ

γ (s)
s

(5)

whenever n0(x) initially supported on a finite region in
space. The linearization conjecture and our numerical
results (Fig. 1) suggest that c∗ is not only an upper
bound but in fact equals the asymptotic wave speed
with probability one. In the special case of periodic
environmental fluctuations (i.e., there exists a natural
number p such that At+p = At and Kt+p(x) = Kt(x) for
all t and x), the asymptotic invasion speed is given by

c∗ = min
s>0

1

sp
ln ρ

( p∏
t=1

AtMt(s)

)

where ρ denotes the dominant eigenvalue of a matrix.
In this case, Weinberger (2002) has proven the lineari-
zation conjecture holds provided that the population
exhibits compensating density dependence.

Unlike periodic environments, many other sta-
tionary environments (e.g., irreducible and aperiodic
Markov chains, autoregressive processes, quasi-
periodic motions) are strongly mixing: The state of
the environment far into the future is independent of
the past. If the matrices Ht(s) are strongly mixing (see,
e.g., Heyde and Cohen 1985), Appendix 2 shows that
there exists σ > 0 such that the average speeds |Xt−x0|

t
are asymptotically normal with mean c∗ and standard
deviation σ/(s∗√t). This approximation is consistent
with numerical simulations of the nonlinear models
(inset of Fig. 1).

In the special case of an unstructured population
m = 1, this result extends Neubert et al. (2000)’s work
on uncorrelated environments to correlated environ-
ments. In this case, the central limit theorem for sta-
tionary sequences of random variables (Durrett 1996)
implies

σ 2 = Var[ln H1(s∗)] + 2
∞∑

i=2

Cov[ln H1(s∗), ln Hi(s∗)]

(6)

where s∗ is such that c∗ = γ (s∗)/s∗. For unstruc-
tured populations, Eq. 6 implies that positive temporal

Fig. 1 The temporal
dynamics of the wave speed
Xt−x0

t for 250 simulations of
the nonlinear juvenile–adult
model. The front of the wave
was determined by a
threshold of nc = 0.001 with
equal weight on both stages,
i.e., w = (1, 1)′. The dashed
line is the predicted
asymptotic wave speed in
Eq. 5. In the inset, a
histogram of the waves
speeds at t = 500 with the
predicted normal
approximation from the
linearization. Parameter
values are ρ = 0, μ = ln 40,
σ = 0.5, a = 1, sJ = 0.3,
and sA = 0.4
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autocorrelations increase the variability in asymptotic
wave speeds while negative autocorrelations reduce
this variability. In contrast, as γ (s) = E[ln H1(s)], tem-
poral autocorrelations have no effect on the mean c∗
invasion speed for unstructured populations. More gen-
erally, when Ht(s) shares reproductive value or stable
structure (i.e., there exists w(s) or v(s) and a stationary
sequence λt(s) such that wT(s)Ht(s) = λt(s)w(s)T for
all t or Ht(s)v(s) = λt(s)v(s) for all t), the asymptotic
invasion speed is given by

c∗ = min
0≤s<ŝ

E[log λ1(s)]
s

(7)

and formula 6 for the variance applies with λ1(s) replac-
ing H1(s). In the case of uncorrelated environments,
de Camino-Beck and Lewis (2009) derived Eq. 7 for
invasion speeds. As in the case of stochastic growth
rates (Tuljapurkar 1990), this formula based on the
eigenvalues λt(s) of Ht(s) does not hold in general.

Examples

To illustrate the applicability of our results to struc-
tured populations, we consider two examples. The first
example is a simple juvenile–adult structure model with
continuous variation in fecundity rates. We use this
example to illustrate the accuracy of the linear approx-
imation, the dynamics of spatial spread, and the effects
of noise amplitude and color on invasion speeds and
stochastic growth. In the second example, we analyze
the effects of environmental stochasticity on invasion
speeds for a herbaceous perennial herb, Calathea ovan-
densis (Marantaceae). This example was studied for
constant environments by Neubert and Caswell (2000).
Here, we illustrate the effects of the frequency of
poor environmental conditions and temporal correla-
tions on invasion speeds and their uncertainty using
empirical data.

Example: f luctuating fecundities We consider a popu-
lation with two stages, juvenile and adult, in which
dispersal occurs following reproduction. Let n1

t and n2
t

denote the densities of the juveniles and adults at time
t, respectively. We assume that the per-capita fecundity
ft exp(−a n2

t ) of the adults is density dependent, ft is
the maximal fecundity at time t, and a > 0 measures
the intensity of intraspecific competition. Let sJ denote
the fraction of juveniles surviving to adulthood and sA

denote the fraction of adults that survive to the next
year. Under these assumptions, the local population dy-

namics are given by nt+1 = Bt(nt)nt where nt = (n1
t , n2

t )

and Bt(nt) are the projection matrices

Bt(nt) =
(

0 ft exp(−a n2
t )

sJ sA

)
.

We assume that log ft are normally distributed with
mean μ, variance σ 2, and temporal correlation ρ be-
tween log ft and log ft+1.

Dispersal follows birth with a Laplacian distribution
with variance 2b 2, and all other stages do not disperse.
Hence, the moment generating function for disper-
sal following birth is m12

t = 1
1−(bs)2 , and the moment

generating function for all other transitions is mij
t = 1.

In other words, the moment generating matrix for
dispersal equals

Mt(s) =
(

1 1
1−(bs)2

1 1

)

and is defined for 0 ≤ s ≤ ŝ = 1/b. When adults are
highly fecund, the interaction between locally unsta-
ble population dynamics and environmental stochastic-
ity can generate complex spatial–temporal patterns of
range expansion (Fig. 2). Nonetheless, simulations of
the full nonlinear model, as illustrated in Fig. 1, suggest
that invasion speeds in the long-term are normally
distributed with a mean given by our formula 5.

To understand the effects of temporal variation and
correlations on wave speeds and population growth, we
computed the stochastic growth rate of the population
γ (0), the asymptotic invasion speed c∗, and the standard
deviations of both of these quantities for a range of
μ and σ 2 values. In all of these simulations, we held
the mean fecundity E[ ft] = exp(μ − σ 2/2) constant at
4. The simulations show that the stochastic growth
rate γ (0) and the asymptotic invasion speed decrease
both with increasing temporal variation and increasing
temporal autocorrelations (Fig. 3). In particular, when
this variation is too high, the population has a negative
stochastic growth rate and does not propagate. Auto-
correlations have little effect on the variability of the
stochastic growth rates, but variation in invasion speeds
increases with autocorrelations.

Example: C. ovandensis C. ovandensis is an under-
story monocot, found in neotropical lowland rain
forests (Horvitz and Schemske 1995). Deciduous dur-
ing the dry season, C. ovandensis plants reinitiate
growth from rhizomes during the rainy season and
bear fruit capsules, which dehisce to expose large
seeds that fall to the forest floor (Horvitz and Beattie
1980). Seeds are myrmecochorous (adapted for ant
dispersal), bearing oily white arils (eliaosomes) that
are considered arthropod prey mimics (Carroll and
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juveniles
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T= 175 T= 200

Fig. 2 Spatiotemporal dynamics of range expansion for the
juvenile–adult model. Spatial distribution and abundance of ju-
veniles (in shaded red) and adults (in shaded gray) plotted at

the indicated times. Parameters (ρ = 0, μ = ln 40, σ = 0.1, a = 1,
sJ = 0.3, and sA = 0.4) are such that local dynamics are chaotic

Janzen 1973). Ponerine ants carry seeds to their nests
like prey, remove and consume the arils, and bury seeds
in nitrogen-rich garbage piles of dead insect prey near
the nest entrance (Horvitz and Beattie 1980; Horvitz
and Schemske 1995).

At Horvitz and Schemske’s study site in south-
ern Mexico, four ant species act as dispersal agents:
Pachycondyla apicalis, Pachycondyla harpax, Solenop-
sis geminata, and Wasmannia auropuncata (Horvitz and
Schemske 1995). C. ovandensis do not propagate veg-
etatively, and empirical distributions of seedlings are
well matched to ant dispersal distances (Horvitz and
Schemske 1986). Horvitz and Schemske (1995) mea-

sured demographic rates, constructing 16 projection
matrices for four sites over 4 years, and found that C.
ovandensis’ highest population growth rates occurred
during El Niño years and in plots affected by tree-
fall gaps (Horvitz and Schemske 1995; Horvitz and
Caswell 1997).

We selected three stage-structured matrices that
represent (1) the highest population growth, ob-
served during an El Niño year (λ = 1.2477; plot 2,
1982–1983; also used in Neubert and Caswell 2000),
(2) lowest (negative) growth in the same plot (λ =
0.9051; plot 2; 1984–1985), and (3) the worst year-plot
combination overall (λ = 0.7356; plot 3, 1984–1985).
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Fig. 3 The stochastic growth rate γ and invasion speed c∗ plotted
as a function of the standard deviation of the log fecundity log ft.
Length of error bars correspond to the standard deviation in
the growth rate after 400 generations. The blue, white, and red

curves correspond to temporal correlations of ρ = −0.5, 0 and
0.5. Parameters are such that E[ ft] = 4, sJ = 0.3, and sA = 0.4.
Simulations for estimates ran for 10,000 generations
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Individuals are classified as seeds, seedlings, juveniles,
pre-reproductives, and small, medium, large, and extra-
large adult plants (for life cycle graph, see Neubert
and Caswell 2000). Seed dispersal involves transitions
from most stages. We follow Neubert and Caswell
(2000) in assuming a Laplace distribution of dispersal
distances of four ant species and weighting dispersal
by the relative abundance of each species (Horvitz
and Schemske 1995; Neubert and Caswell 2000). This
treatment assumes that seed fates are independent of
dispersal agent (Neubert and Caswell 2000) and yields
a seed dispersal kernel

k(x − y) =
4∑

i=1

piki(x − y)

where pi are the proportion of seeds dispersed by
each ant species and ki(x − y) are Laplace dispersal
kernels with generating functions mi(s) = 1/(1 − b 2

i s2)

with parameter bi, representing the mean distance of
seed is moved by a particular ant species as reported by
Horvitz and Schemske (1986). There is no movement
associated with the remaining stages, and consequently,
the moment generating functions associated with these
sedentary stages are given by m(s) = 1.

We ran two types of simulations representing
(1) random fluctuations between environmental states
corresponding to the highest population growth and
the lowest population growth in the same plot (i.e.,
randomly varying between the matrices with dominant
eigenvalues λ = 1.2477 and λ = 0.9051) and (2) random
fluctuations between environmental states correspond-
ing to the highest and lowest overall population growth
across all sites (i.e., λ = 1.2477 and λ = 0.7356). For
each of these simulations, switches between “good”
and “bad” years were modeled by a Markov chain in
which the probability of transition from a bad year to
a good year is q and the probability of transition from
a good year to a bad year is p. For this model of the
environmental dynamics, the long-term frequency of
good years is q

q+p and the temporal autocorrelation
between environmental states is 1 − q − p. For both
scenarios, simulations were run for all combinations of
p and q values to determine the combined effects of
frequency of good years and temporal correlations on
stochastic growth and invasion speed.

Both the stochastic growth rate and invasion speed
were strongly correlated with the overall frequency of
good years, while correlations between environmental
states had a relatively small effect on asymptotic growth
rates and invasion speeds (Fig. 4). However, positive
correlations between environmental states did increase
growth rates and invasion speeds, while negative corre-

lations reduced both (left and middle column of Fig. 4).
For growth rates, the effect of correlations was the
greatest when the frequency of good and bad years
were equal (q/(q + p) = 0.5; left column of Fig. 4),
presumably since the largest number of combinations
of (p, q) values can generate this frequency. Environ-
mental correlations had the greatest impact on inva-
sion speeds near the threshold between positive and
zero growth (middle column of Fig. 4), where inva-
sion speeds also exhibited the greatest variance (right
column of Fig. 4). As a result, near the threshold in
parameter values between positive and negative growth
rates (and hence positive or zero invasion speed), the
magnitude and sign of correlations between environ-
mental states determined whether populations grew
and spread or declined. For example, for scenario one
(top row of Fig. 4), strong positive correlations allowed
the population to grow when only 35% of years were
good, while strong negative correlations generated neg-
ative growth rates under the same scenario even at
nearly even proportions of good and bad years.

Like growth rates and invasion speed, variance in
invasion speed was also strongly affected by both envi-
ronmental correlation and the frequency of good years
(right column of Fig. 4). Most notably, invasion speed
variance increased approaching the threshold of zero
population growth rates in both scenarios, though most
dramatically in the second (bottom row of Fig. 4), and
declined as the proportion of good years increased.
Variance in invasion speed also increased as environ-
mental correlations shifted from strongly negative to
strongly positive. Hence, the combinations of environ-
mental states that yielded the fastest invasion speeds
also showed the highest variance in invasion speed.

Comparing between scenarios, the scenario with a
higher average growth rate between years (top row of
Fig. 4) exhibited a lower threshold for positive growth
rates with respect to the frequency of good years and
overall lower variance in invasion speeds, as expected.
Since positive invasion speeds increased roughly lin-
early with the proportion of good years, a necessary
outcome was that each increment of change in the
proportion of good years led to a greater proportional
increase in invasion speed in the “worse” scenario (bot-
tom row of Fig. 4) than the scenario in which average
growth rate across years was higher (top row of Fig. 4).
In the context of real systems, this means that we might
expect to observe particularly steep increases in inva-
sion speed in response to increased frequency of good
years in regions where bad years are particularly bad.
In particular, changes in the frequency of El Niño years
or in the temporal correlation between El Niño events
could substantially affect rates of spread of Calathea.
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Fig. 4 Stochastic growth rates and invasion speeds (c∗) for C.
ovandensis. Stochastic growth rates (left column), asymptotic
invasion speeds (middle column), and standard deviation in in-
vasion speeds after 400 years (right column) are plotted as a
function of the frequency q/(q + p) of good years for all prob-
abilities p and q of switching from “good” to “bad” years and
vice versa. Temporal correlations associated with the different
p, q combinations are plotted in color as indicated in the legend.

Figures in the top row correspond to random fluctuations between
environmental states corresponding to the highest population
growth and the lowest population growth in the same plot (i.e.,
λ = 1.2477 and λ = 0.9051). Figures in the bottom row corre-
spond to random fluctuations between environmental states cor-
responding to the highest and lowest overall population growth
across all sites (i.e., λ = 1.2477 and λ = 0.7356). Simulations ran
for 100,000 generations

Discussion

How environmental variation influences population dy-
namics and biodiversity is a central question in ecology
(Andrewartha and Birch 1954; May 1975; Tuljapurkar
1982; Chesson 2000; Holyoak et al. 2005). In our
era of increasing climate variability and accelerating
global transport of species at rates and distances far
beyond their innate capacity (Vitousek et al. 1997),
this question is not only academic but also directly
relevant to wildlife management and the maintenance
of regional biodiversity. The ability to forecast and
mitigate impacts of successful invaders and changes
in the distribution of native species relies on an en-
hanced understanding of the potential impacts of en-
vironmental variability on population growth rates and
invasion speeds (Neubert et al. 2000; Collingham and
Huntley 2000). By extending a class of stage-structured

integrodifference equation models to variable environ-
ments, we developed and applied a methodology for
examining how environmental variability and temporal
correlations impact stochastic growth rates, invasion
speeds, and uncertainty in invasion speed predictions.

For structured populations in fluctuating environ-
ments, our analysis reveals that invasion speeds are
approximately normally distributed and identifies data
requirements for estimating the mean and variance of
invasion speeds. As shown by Neubert et al. (2000) for
unstructured populations in serially uncorrelated envi-
ronments, we found that variance in invasion speeds
decay in time. Hence, the greatest uncertainty in pre-
dicting the spatial extent of an invader occurs in the
earliest stages of spatial spread. The data require-
ments for quantifying this uncertainty are twofold. To
capture the effects of environmental fluctuations on
demography, estimates of survivorship, fecundity, and
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transition rates between different stages are needed for
the range of environmental conditions most likely to be
encountered by the population (Caswell 2001; Boyce
et al. 2006). Our methods also require estimates for
the dispersal kernel associated with each demographic
transition under an appropriate range of environmental
conditions. While getting such estimates is challeng-
ing, our methods can help focus empirical efforts by
identifying which stage-specific demographic rates have
the largest effect on the mean and variance of the
invasion speed. More generally, they can be used as
an exploratory tool to identify key features of how
environmental variability and stage structure interact
to determine invasion speeds. By developing sensi-
tivity formulas for the mean invasion speed, Caswell
et al. (2010), in an accompanying paper, have taken an
important next step for applying these methods.

Our examples illustrate several important general
effects of environmental variability on invasion speeds
and point to the ways in which the outcomes of
environmental–demographic interactions might vary
between species. The results of our two-stage example
with fluctuating fecundities showed growth rates and
invasion speeds declining as the magnitude of variance
in vital rates increased. This result is consistent with
earlier work showing that increases in the magnitude
of environmental (e.g., climate) variability tend to re-
duce population growth rates (Lewontin and Cohen
1969). Theory and empirical findings predict that the
magnitude of these effects on population growth will
depend on a species’ life history: Short-lived species are
more negatively affected by increased variation in vital
rates than longer-lived species (Chesson 1985; Morris
et al. 2008). Although not investigated here, it seems
reasonable to conjecture that these life history traits
will have similar effects on invasion speeds.

While increasing environmental variability reduces
growth and invasion speed, correlations between en-
vironmental states can have a substantial impact on
the direction and variance in growth and wave speed.
Our analysis of a general unstructured model and two
structured models shows that positive temporal corre-
lations between environmental states (reddened spec-
trum in figures) created greater variability in growth
rates and invasion speeds, even at low levels of envi-
ronmental noise. This finding is consistent with pre-
vious work, which shows potentially strong effects of
positive temporal correlations in vital rates on variance
in population growth (Tuljapurkar and Orzack 1980;
Tuljapurkar 1982; Runge and Moen 1998). In contrast
to the consistent effect of correlations on variance, the
direction of effects on expected growth rates and in-
vasion speeds differed between examples. The general

unstructured model shows no effect, which suggests
that demographic structure allows for effects to go
in either direction. Positive environmental correlations
yielded negative effects on both stochastic growth rates
and invasion speeds in the two-stage model but positive
effects in the empirically based Calathea model. Simi-
larly, the direction of effects of correlations has been
shown to vary in a life history context as well: Serial cor-
relations can have strongly positive or negative effects
on fitness, depending on the structure of life history and
the nature of within-year (among reproductive classes)
and between-year correlations in fertilities in response
to environmental variation (Tuljapurkar et al. 2009).

We also found that the magnitude of effect of envi-
ronmental correlations differed between examples. In
the Calathea example, the effect of correlations was
small relative to the importance of the overall propor-
tion of years with positive growth rates and was more
limited than in the two-stage model. Limited effects
of temporal environmental correlations on long-term
stochastic growth rates have been observed in other
empirical studies (Silva et al. 1991), and theoretical
studies have found relatively minor effects of temporal
correlation in vital rates on stochastic growth rates
(Tuljapurkar 1982; Fieberg and Ellner 2001). How-
ever, the effects of temporal autocorrelation can be
great under some circumstances, depending on life
history and how well vital rates “remember” the past
(Tuljapurkar and Haridas 2006). Populations with weak
demographic damping (strong transient effects) tend
to accumulate greater variability over time than those
with strong damping, and these effects vary with
the magnitude of serial correlation (Tuljapurkar and
Haridas 2006).

Although the Calathea example showed relatively
small effects of correlations overall, correlations still
had the potential to substantially influence growth rates
and invasion speed under some conditions, especially
for populations near the threshold of positive and neg-
ative growth rates. In these threshold cases, strongly
positive correlations resulted in the fastest invasion
speeds and also generally the greatest variance in those
speeds. This suggests that, on the ground, changes in
environmental correlations could lead to sudden or
episodic changes in invasion rates for species expe-
riencing threshold growth conditions. These kinds of
dynamics might contribute to common observations
of a lag between establishment and spread of most
introduced species, even those that eventually become
invasive, alongside other factors such as adaptation
and hybridization with native species (Ellstrand and
Schierenbeck 2000; Mack et al. 2000; Sakai et al. 2001).
Among native species responding to climate change,
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these results suggest that we might expect to ob-
serve great variation in rates of range expansion, since
populations at the edge of species ranges are most likely
to exist close to the threshold between positive and neg-
ative population growth. In either case, the increased
variability in stochastic growth rates and invasion speed
around threshold conditions will make biological ex-
pansions and invasions harder to forecast. For species
characterized by substantial interannual variation and
volatility in vital rates, accurately forecasting rates of
spread may be particularly challenging.

Several factors must be taken into careful account
in applying integrodifference equation models to in-
vasions on real landscapes. For one, it is critical to
understand the basic nature of relevant environmental
factors and whether a given form of disturbance im-
poses different consequences when rare than it does
when chronic (Tuljapurkar and Haridas 2006). For
example, Tuljapurkar and Haridas point out that an in-
crease in the frequency of hurricanes may weaken auto-
correlation by preventing successional change, thereby
effectively reducing demographic variability and the
effects of autocorrelation over time despite the outward
perception of dramatic environmental variation. Simi-
larly, single years or short-term strings of conditions
(e.g., warm years) may boost demographic rates for
a given species, while extended autocorrelated series
would lead to more substantial ecological changes (e.g.,
aridification) that negatively impact habitat suitability
and represent non-Markovian dynamics. The models
we present are applicable to increasing climatic vari-
ability but not to sustained directional changes over
time. In the context of climate change, these models
are likely sufficient to describe many regions of the
globe, where increasing climate variability is expected
to obscure the effects of concurrent directional trends
over much of the next century (IPCC 2007), but not
appropriate for regions where trending changes in tem-
perature are more acute.

Despite these limitations, our methods provide a
first step in estimating invasion speeds for populations
experiencing stage-specific temporal variation in sur-
vivorship, transition rates between stages, fecundity,
and dispersal. Using these methods to investigate the
effects of temporal correlations on rates of invasion
across a wider range of life histories and dispersal types
will be an important next step.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

Appendix 1: Mathematical details

In this appendix, we derive the formulas presented in
the main text. Throughout this appendix, we assume the
assumptions outlined in the main text hold.

We begin by considering solutions to the linear
equation

nt+1(x) =
∫ ∞

−∞

[
Kt(x − y) ◦ At

]
nt(y) dy (8)

with n0(x) = ue−sx and s > 0. We claim that

nt(x) = Ht−1(s) . . . H0(s)ue−sx (9)

Indeed, assume that Eq. 9 holds for some t ≥ 0. Then

nt+1(x) =
∫ ∞

−∞

[
Kt(x − y) ◦ At

]
nt(y) dy

=
∫ ∞

−∞

[
Kt(x − y) ◦ At

]
Ht−1(s) . . . H0(s)ue−sydy

=
∫ ∞

−∞

[
Kt(z) ◦ At

]
esz dz Ht−1(s) . . . H0(s)ue−sx

where z = x − y

= Ht(s)Ht−1(s) . . . H0(s)ue−sx.

Let Xt(s) be such that 〈nt(Xt(s)), w〉 = nc. Then
〈n0(X0(s)), w〉 = 〈nt(Xt(s)), w〉 and Eq. 9 imply that

〈ue−sX0(s), w〉 = 〈Ht−1(s) . . . H0(s)ue−sXt(s), w〉.
equivalently

Xt(s) − X0(s) = 1

s
ln

〈Ht−1(s) . . . H0(s)u, w〉
〈u, w〉

Equation 4 implies that limt→∞ Xt(s)−X0(s)
t = γ (s)

s with
probability one.

Now consider an initial condition n0(x) with compact
support for the nonlinear model 3. Given any s, choose
u > 0 such that n0(x) ≤ ue−sx. Our assumption that
Bt(n) ≤ At implies that

nt(x) ≤ Ht−1(s) . . . H0(s)ue−sx

Thus, Xt ≤ Xt(s) where Xt is such that 〈nt(Xt), w〉 = nc.
Hence, with probability one,

lim sup
t→∞

Xt − x0

t
≤ γ (s)/s

Since this holds for any 0 < s < ŝ, it follows that

lim sup
t→∞

Xt − x0

t
≤ min

0<s<ŝ
γ (s)/s
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with probability one. The linearization conjecture im-
plies that

lim
t→∞

Xt − x0

t
= min

0<s<ŝ
γ (s)/s =: c∗

Appendix 2: Log-normal approximation

Let s∗ be such that γ (s∗)/s∗ = c∗. Assume that H1(s∗),
H2(s∗), . . . are strongly mixing (see, e.g., Tuljapurkar
1990; Heyde and Cohen 1985 for definitions). Then
Theorem 1 in Heyde and Cohen (1985) implies that
there exists σ ≥ 0 such that

ln〈Ht−1(s∗) . . . H0(s∗)u, w〉 − c∗s∗t√
tσ

converges in distribution to a standard normal as t →
∞.
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