14 research outputs found

    Large scale and integrated platform for digital mass culture of anchorage dependent cells

    Get PDF
    Industrial applications of anchorage-dependent cells require large-scale cell culture with multifunctional monitoring of culture conditions and control of cell behaviour. Here, we introduce a large-scale, integrated, and smart cell-culture platform (LISCCP) that facilitates digital mass culture of anchorage-dependent cells. LISCCP is devised through large-scale integration of ultrathin sensors and stimulator arrays in multiple layers. LISCCP provides real-time, 3D, and multimodal monitoring and localized control of the cultured cells, which thereby allows minimizing operation labour and maximizing cell culture performance. Wireless integration of multiple LISCCPs across multiple incubators further amplifies the culture scale and enables digital monitoring and local control of numerous culture layers, making the large-scale culture more efficient. Thus, LISCCP can transform conventional labour-intensive and high-cost cell cultures into efficient digital mass cell cultures. This platform could be useful for industrial applications of cell cultures such as in vitro toxicity testing of drugs and cosmetics and clinical scale production of cells for cell therapy.

    Molecular basis for SMC rod formation and its dissolution upon DNA binding.

    Get PDF
    SMC condensin complexes are central modulators of chromosome superstructure in all branches of life. Their SMC subunits form a long intramolecular coiled coil, which connects a constitutive "hinge" dimerization domain with an ATP-regulated "head" dimerization module. Here, we address the structural arrangement of the long coiled coils in SMC complexes. We unequivocally show that prokaryotic Smc-ScpAB, eukaryotic condensin, and possibly also cohesin form rod-like structures, with their coiled coils being closely juxtaposed and accurately anchored to the hinge. Upon ATP-induced binding of DNA to the hinge, however, Smc switches to a more open configuration. Our data suggest that a long-distance structural transition is transmitted from the Smc head domains to regulate Smc-ScpAB's association with DNA. These findings uncover a conserved architectural theme in SMC complexes, provide a mechanistic basis for Smc's dynamic engagement with chromosomes, and offer a molecular explanation for defects in Cornelia de Lange syndrome

    Improving the Usability of a Wearable Input Device SCURRY TM

    No full text
    In this paper, a finger-click recognition method is proposed to improve the recognition performance for finger-clicking of a wearable input device, called SCURRYℱ. The proposed method is composed of three parts including feature extraction part, valid click discrimination part, and cross-talk avoidance part. Two types of MEMS inertial sensors are embedded into the wearable input device to measure the angular velocity of a hand (hand movement) and the acceleration rates at the ends of fingers (finger-click motion). The experiment applied to the SCURRY ℱ device shows the improved stability and performance

    IL21 therapy combined with PD-1 and Tim-3 blockade provides enhanced NK cell antitumor activity against MHC class I-deficient tumors

    No full text
    Increased expression of coinhibitory molecules such as PD-1 and Tim-3 on NK cells has been demonstrated in advanced cancer patients who harbor MHC class I-deficient tumors. However, even in preclinical models, the antitumor effects of checkpoint blockade on NK cells have not been clearly elucidated. Here, we show that anti-PD-1/anti-Tim-3 treatment suppressed tumor progression in mice bearing MHC class I-deficient tumors, and the suppression was further enhanced by recombinant IL21 (rIL21) treatments through an NK-cell-dependent mechanism. We also show that the intratumoral delivery of rIL21 attracted NK cells to the tumor site in a CXCR3-dependent fashion. A combination of IL21 and checkpoint blockade facilitated the effector function of exhausted NK cells in cancer patients. Given the effects of the checkpoint blockade and rIL21 combination on NK cells infiltrating into MHC class I-deficient tumors, we suggest that the efficacy of checkpoint blockade can be enhanced through the administration of IL21 for advanced cancer patients with MHC class I-low/deficient tumors. (C) 2018 AACR.Y

    Activation of NKT Cells in an Anti-PD-1-Resistant Tumor Model Enhances Antitumor Immunity by Reinvigorating Exhausted CD8 T Cells

    No full text
    PD-1-based cancer immunotherapy is a successful example of immune checkpoint blockade that provides long-term durable therapeutic effects in patients with cancer across a wide spectrum of cancer types. Accumulating evidence suggests that anti-PD-1 therapy enhances antitumor immunity by reversing the function of exhausted T cells in the tumor environment. However, the responsiveness rate of patients with cancer to anti-PD-1 therapy remains low, providing an urgent need for optimization and improvement. In this study, we designed an anti-PD-1-resistant mouse tumor model and showed that unresponsiveness to anti-PD-1 is associated with a gradual increase in CD8 T-cell exhaustion. We also found that invariant natural killer T cell stimulation by the synthetic ligand alpha-galactosylceramide (alpha GC) can enhance the antitumor effect in anti-PD-1-resistant tumors by restoring the effector function of tumor antigen-specific exhausted CD8 T cells. IL2 and IL12 were among the cytokines produced by alpha GC stimulation critical for reinvigorating exhausted CD8 T cells in tumor-bearing mice and patients with cancer. Furthermore, we observed a synergistic increase in the antitumor effect between alpha GC-loaded antigen-presenting cells and PD-1 blockade in a therapeutic murine tumor model. Our study suggests NKT cell stimulation as a promising therapeutic strategy for the treatment of patients with anti-PD-1-resistant cancer. Significance: These findings provide mechanistic insights into the application of NKT cell stimulation as a potent adjuvant for immunotherapy against advanced cancer. (C) 2018 AACR.Y

    Synergistic Oxygen Generation and Reactive Oxygen Species Scavenging by Manganese Ferrite/Ceria Co-decorated Nanoparticles for Rheumatoid Arthritis Treatment

    No full text
    Poor O-2 supply to the infiltrated immune cells in the joint synovium of rheumatoid arthritis (RA) up-regulates hypoxia-inducible factor (HIF-1 alpha) expression and induces reactive oxygen species (ROS) generation, both of which exacerbate synovial inflammation. Synovial inflammation in RA can be resolved by eliminating pro-inflammatory M1 macrophages and inducing anti-inflammatory M2 macrophages. Because hypoxia and ROS in the RA synovium play a crucial role in the induction of Ml macrophages and reduction of M2 macrophages, herein, we develop manganese ferrite and ceria nanoparticle-anchored mesoporous silica nanoparticles (MFC-MSNs) that can synergistically scavenge ROS and produce O-2 for reducing M1 macrophage levels and inducing M2 macrophages for RA treatment. MFC-MSNs exhibit a synergistic effect on O-2 generation and ROS scavenging that is attributed to the complementary reaction of ceria nanoparticles (NPs) that can scavenge intermediate hydroxyl radicals generated by manganese ferrite NPs in the process of O-2 generation during the Fenton reaction, leading to the efficient polarization of M1 to M2 macrophages both in vitro and in vivo. Intra-articular administration of MFC-MSNs to rat RA models alleviated hypoxia, inflammation, and pathological features in the joint. Furthermore, MSNs were used as a drug-delivery vehicle, releasing the anti-rheumatic drug methotrexate in a sustained manner to augment the therapeutic effect of MFC-MSNs. This study highlights the therapeutic potential of MFC-MSNs that simultaneously generate O-2 and scavenge ROS, subsequently driving inflammatory macrophages to the anti-inflammatory subtype for RA treatment.

    IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours

    No full text
    During cancer immunoediting, loss of major histocompatibility complex class I (MHC-I) in neoplasm contributes to the evasion of tumours from host immune system. Recent studies have demonstrated that most natural killer (NK) cells that are found in advanced cancers are defective, releasing the malignant MHC-I-deficient tumours from NK-cell-dependent immune control. Here, we show that a natural killer T (NKT)-cell-ligand-loaded tumour-antigen expressing antigen-presenting cell (APC)-based vaccine effectively eradicates these advanced tumours. During this process, we find that the co-expression of Tim-3 and PD-1 marks functionally exhausted NK cells in advanced tumours and that MHC-I downregulation in tumours is closely associated with the induction of NK-cell exhaustion in both tumour-bearing mice and cancer patients. Furthermore, the recovery of NK-cell function by IL-21 is critical for the anti-tumour effects of the vaccine against advanced tumours. These results reveal the process involved in the induction of NK-cell dysfunction in advanced cancers and provide a guidance for the development of strategies for cancer immunotherapy.Y
    corecore