175 research outputs found

    A phase II study of the insulin-like growth factor type I receptor inhibitor IMC-A12 in patients with metastatic uveal melanoma.

    Get PDF
    Uveal melanoma is a rare and aggressive malignancy and up to half of all patients will develop metastatic disease despite the effective treatment of the primary tumor. Insulin-like growth factors I/II play a fundamental role in the cell migration, proliferation, and apoptosis. IMC-A12, a mAb specifically targets insulin-like growth factor type I receptor, has shown promise in preclinical studies. We performed a multicenter phase II study for patients with metastatic uveal melanoma administered IMC-A12 10 mg/kg IV every two weeks until disease progression or unacceptable toxicity. The primary endpoint was objective response (proportion of patients with complete or partial response), and secondary endpoints were disease control rate, progression-free survival, and overall survival. A total of 18 patients enrolled in this study (10 males and eight females) with a median age. Ten patients (55%) had stable disease, seven patients (38%) had progression as best overall response. No partial response or complete response was observed; however, the disease control rate, defined as complete response + partial response + stable disease ≥3 months, was 50%. Median progression-free survival was 3.1 months, and median overall survival was 13.8 months. Adverse events of any grade occurred in 13 patients (72.2%). Treatment-related grade 3 adverse events were rare, and there were no grade 4 or 5 related adverse events. IMC-A12 was very well tolerated, however, showed limited clinical activity in uveal melanoma as a single agent. Due to its low toxicity profile it could be studied in combination with other pathway-specific agents

    Developmental and Molecular Characterization of Emerging β- and γδ-Selected Pre-T Cells in the Adult Mouse Thymus

    Get PDF
    The first checkpoint in T cell development, β selection, has remained incompletely characterized for lack of specific surface markers. We show that CD27 is upregulated in DN3 thymocytes initiating β selection, concomitant with intracellular TCR-β expression. Clonal analysis determined that CD27^(high) DN3 cells generate CD4^+CD8^+ progeny with more than 90% efficiency, faster and more efficiently than the CD27^(low) majority. CD27 upregulation also occurs in γδ-selected DN3 thymocytes in TCR-β−/− mice and in IL2-GFP transgenic reporter mice where GFP marks the earliest emerging TCR-γδ cells from DN3 thymocytes. With CD27 to distinguish pre- and postselection DN3 cells, a detailed gene expression analysis defined regulatory changes associated with checkpoint arrest, with β selection, and with γδ selection. γδ selection induces higher CD5, Egr, and Runx3 expression as compared to β selection, but it triggers less proliferation. Our results also reveal differences in Notch/Delta dependence at the earliest stages of divergence between developing αβ and γδ T-lineage cells

    The Transcription Factor PU.1 Regulates γδ T Cell Homeostasis

    Get PDF
    T cell development results in the generation of both mature αβ and γδ T cells. While αβ T cells predominate in secondary lymphoid organs, γδ T cells are more abundant in mucosal tissues. PU.1, an Ets family transcription factor, also identified as the spleen focus forming virus proviral integration site-1 (Sfpi1) is essential for early stages of T cell development, but is down regulated during the DN T-cell stage.In this study, we show that in mice specifically lacking PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1(lck-/-)) there are increased numbers of γδ T cells in spleen, thymus and in the intestine when compared to wild-type mice. The increase in γδ T cell numbers in PU.1-deficient mice is consistent in γδ T cell subsets identified by TCR variable regions. PU.1-deficient γδ T cells demonstrate greater proliferation in vivo and in vitro.The increase of γδ T cell numbers in Lck-Cre deleter strains, where deletion occurs after PU.1 expression is diminished, as well as the observation that PU.1-deficient γδ T cells have greater proliferative responses than wild type cells, suggests that PU.1 effects are not developmental but rather at the level of homeostasis. Thus, our data shows that PU.1 has a negative influence on γδ T cell expansion

    Improving the outcome of patients with castration-resistant prostate cancer through rational drug development

    Get PDF
    Castration-resistant prostate cancer (CRPC) is now the second most common cause of male cancer-related mortality. Although docetaxel has recently been shown to extend the survival of patients with CRPC in two large randomised phase III studies, subsequent treatment options remain limited for these patients. A greater understanding of the molecular causes of castration resistance is allowing a more rational approach to the development of new drugs and many new agents are now in clinical development. Therapeutic targets include the adrenal steroid synthesis pathway, androgen receptor signalling, the epidermal growth factor receptor family, insulin growth factor-1 receptor, histone deacetylase, heat shock protein 90 and the tumour vasculature. Drugs against these targets are giving an insight into the molecular pathogenesis of this disease and promise to improve patient quality of life and survival. Finally, the recent discovery of chromosomal translocations resulting in the upregulation of one of at least 3 ETS genes (ERG, ETV1, ETV4) may lead to novel agents for the treatment of this disease

    Mammary tumors that become independent of the type I insulin-like growth factor receptor express elevated levels of platelet-derived growth factor receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeted therapies are becoming an essential part of breast cancer treatment and agents targeting the type I insulin-like growth factor receptor (IGF-IR) are currently being investigated in clinical trials. One of the limitations of targeted therapies is the development of resistant variants and these variants typically present with unique gene expression patterns and characteristics compared to the original tumor.</p> <p>Results</p> <p>MTB-IGFIR transgenic mice, with inducible overexpression of the IGF-IR were used to model mammary tumors that develop resistance to IGF-IR targeting agents. IGF-IR independent mammary tumors, previously shown to possess characteristics associated with EMT, were found to express elevated levels of PDGFRα and PDGFRβ. Furthermore, these receptors were shown to be inversely expressed with the IGF-IR in this model. Using cell lines derived from IGF-IR-independent mammary tumors (from MTB-IGFIR mice), it was demonstrated that PDGFRα and to a lesser extent PDGFRβ was important for cell migration and invasion as RNAi knockdown of PDGFRα alone or PDGFRα and PDGFRβ in combination, significantly decreased tumor cell migration in Boyden chamber assays and suppressed cell migration in scratch wound assays. Somewhat surprisingly, concomitant knockdown of PDGFRα and PDGFRβ resulted in a modest increase in cell proliferation and a decrease in apoptosis.</p> <p>Conclusion</p> <p>During IGF-IR independence, PDGFRs are upregulated and function to enhance tumor cell motility. These results demonstrate a novel interaction between the IGF-IR and PDGFRs and highlight an important, therapeutically relevant pathway, for tumor cell migration and invasion.</p

    Antibody Phage Display Libraries: Contributions to Oncology

    Get PDF
    Since the advent of phage display technology, dating back to 1985, antibody libraries displayed on filamentous phage surfaces have been used to identify specific binders for many different purposes, including the recognition of tumors. Phage display represents a high-throughput technique for screening billions of random fusion antibodies against virtually any target on the surface or inside cancer cells, or even soluble markers found in patient serum. Many phage display derived binders targeting important tumor markers have been identified. Selection directed to tumoral cells’ surfaces lead to the identification of unknown tumoral markers. Also the improvement of methods that require smaller amounts of cells has opened the possibility to use this approach on patient samples. Robust techniques combining an antibody library displayed on the phage surface and protein microarray allowed the identification of auto antibodies recognized by patient sera. Many Ab molecules directly or indirectly targeting angiogenesis have been identified, and one of them, ramucirumab, has been tested in 27 phase I–III clinical trials in a broad array of cancers. Examples of such antibodies will be discussed here with emphasis on those used as probes for molecular imaging and other clinical trials

    Targeting insulin-like growth factor pathways

    Get PDF
    Some cancer cells depend on the function of specific molecules for their growth, survival, and metastatic potential. Targeting of these critical molecules has arguably been the best therapy for cancer as demonstrated by the success of tamoxifen and trastuzumab in breast cancer. This review will evaluate the type I IGF receptor (IGF-IR) as a potential target for cancer therapy. As new drugs come forward targeting this receptor system, several issues will need to be addressed in the early clinical trials using these agents
    • …
    corecore