425 research outputs found

    AN EXPERIMENTAL STUDY OF THE CONVECTIVE HEAT TRANSFER ENHANCEMENT: APPLICATION OF TURBULENCE PROMOTERS

    Get PDF
    This work presents an experimental study addressing the effects of turbulence promoters on heat transfer rate at circular cylinder in external cross flow. Within this framework, the work focuses on assessing the effects of three kind of turbulence promoters (with circular, square and hexagonal cross sections) on convective heat transfer enhancement. The distance from turbulence promoters to the circular cylinder (50, 100 and 150mm upstream), as well as the free stream velocity inside the wind tunnel (Reynolds number) were the parameters investigated. The validation of the experimental methodology was performed by comparing the present results with empiric correlations available in the literature. The main results indicate that the convective heat transfer coefficient was enhanced when using turbulence promoters. The highest heat transfer enhancement obtained was around 25% correponding to the case of square turbulence promoter placed closely (50mm) to the circular cylinder. Finally, it is worth mentioning that all the experimental results for the convective coefficient were condensed in a new empirical correlation with good accuracy

    Unveiling age-independent spectral markers of propofol-induced loss of consciousness by decomposing the electroencephalographic spectrum into its periodic and aperiodic components

    Get PDF
    Background: Induction of general anesthesia with propofol induces radical changes in cortical network organization, leading to unconsciousness. While perioperative frontal electroencephalography (EEG) has been widely implemented in the past decades, validated and age-independent EEG markers for the timepoint of loss of consciousness (LOC) are lacking. Especially the appearance of spatially coherent frontal alpha oscillations (8-12 Hz) marks the transition to unconsciousness.Here we explored whether decomposing the EEG spectrum into its periodic and aperiodic components unveiled markers of LOC and investigated their age-dependency. We further characterized the LOC-associated alpha oscillations by parametrizing the adjusted power over the aperiodic component, the center frequency, and the bandwidth of the peak in the alpha range. Methods: In this prospective observational trial, EEG were recorded in a young (18-30 years) and an elderly age-cohort (>= 70 years) over the transition to propofol-induced unconsciousness. An event marker was set in the EEG recordings at the timepoint of LOC, defined with the suppression of the lid closure reflex. Spectral analysis was conducted with the multitaper method. Aperiodic and periodic components were parametrized with the FOOOF toolbox. Aperiodic parametrization comprised the exponent and the offset. The periodic parametrization consisted in the characterization of the peak in the alpha range with its adjusted power, center frequency and bandwidth. Three time-segments were defined: preLOC (105 - 75 s before LOC), LOC (15 s before to 15 s after LOC), postLOC (190 - 220 s after LOC). Statistical significance was determined with a repeated-measures ANOVA. Results: Loss of consciousness was associated with an increase in the aperiodic exponent (young: p = 0.004, elderly: p = 0.007) and offset (young: p = 0.020, elderly: p = 0.004) as well as an increase in the adjusted power (young: p < 0.001, elderly p = 0.011) and center frequency (young: p = 0.008, elderly: p < 0.001) of the periodic alpha peak. We saw age-related differences in the aperiodic exponent and offset after LOC as well as in the power and bandwidth of the periodic alpha peak during LOC. Conclusion: Decomposing the EEG spectrum over induction of anesthesia into its periodic and aperiodic components unveiled novel age-independent EEG markers of propofol-induced LOC: the aperiodic exponent and offset as well as the center frequency and adjusted power of the power peak in the alpha range

    PASAC: Uma ferramenta de auxílio no estudo da execução de Pipeline em processadores

    Get PDF
    Este artigo descreve o PASAC, uma ferramenta de apoio ao ensino de arquitetura de computadores, capaz de simular um caminho de dados Pipeline, aceitando como entrada códigos em Assembly MIPS. O artigo demonstra as principais características de funcionamento do software, trazendo com mais detalhamento a identificação e tratamento de Hazards e visualização da ativação dos módulos em cada estágio do Pipeline

    Negotiating topic changes:native and non-native English speakers in conversation

    Get PDF
    There is a tendency to view conversations involving non‐native speakers (NNSs) as inevitably fraught with problems, including an inability to handle topic management. This article, in contrast, will focus on effective topic changes made by non‐native speakers during informal conversations with native speakers of English. A micro‐analysis of ten conversations revealed several ways of shifting conversational topics; however, the article concentrates on those strategies which the participants used to effect a particular type of topic move, namely ‘marked topic changes’, where there is no connection at all with previous talk. The findings show how these topic changes were jointly negotiated, and that the non‐native speakers’ contributions to initiating new topics were competently managed

    Unveiling age-independent spectral markers of propofol-induced loss of consciousness by decomposing the electroencephalographic spectrum into its periodic and aperiodic components

    Get PDF
    BackgroundInduction of general anesthesia with propofol induces radical changes in cortical network organization, leading to unconsciousness. While perioperative frontal electroencephalography (EEG) has been widely implemented in the past decades, validated and age-independent EEG markers for the timepoint of loss of consciousness (LOC) are lacking. Especially the appearance of spatially coherent frontal alpha oscillations (8–12 Hz) marks the transition to unconsciousness.Here we explored whether decomposing the EEG spectrum into its periodic and aperiodic components unveiled markers of LOC and investigated their age-dependency. We further characterized the LOC-associated alpha oscillations by parametrizing the adjusted power over the aperiodic component, the center frequency, and the bandwidth of the peak in the alpha range.MethodsIn this prospective observational trial, EEG were recorded in a young (18–30 years) and an elderly age-cohort (≥ 70 years) over the transition to propofol-induced unconsciousness. An event marker was set in the EEG recordings at the timepoint of LOC, defined with the suppression of the lid closure reflex. Spectral analysis was conducted with the multitaper method. Aperiodic and periodic components were parametrized with the FOOOF toolbox. Aperiodic parametrization comprised the exponent and the offset. The periodic parametrization consisted in the characterization of the peak in the alpha range with its adjusted power, center frequency and bandwidth. Three time-segments were defined: preLOC (105 – 75 s before LOC), LOC (15 s before to 15 s after LOC), postLOC (190 – 220 s after LOC). Statistical significance was determined with a repeated-measures ANOVA.ResultsLoss of consciousness was associated with an increase in the aperiodic exponent (young: p = 0.004, elderly: p = 0.007) and offset (young: p = 0.020, elderly: p = 0.004) as well as an increase in the adjusted power (young: p &lt; 0.001, elderly p = 0.011) and center frequency (young: p = 0.008, elderly: p &lt; 0.001) of the periodic alpha peak. We saw age-related differences in the aperiodic exponent and offset after LOC as well as in the power and bandwidth of the periodic alpha peak during LOC.ConclusionDecomposing the EEG spectrum over induction of anesthesia into its periodic and aperiodic components unveiled novel age-independent EEG markers of propofol-induced LOC: the aperiodic exponent and offset as well as the center frequency and adjusted power of the power peak in the alpha range

    The Iowa Homemaker vol.4, no.2

    Get PDF
    Table of Contents To the High School Girls of Iowa by Anna E. Richardson, page 3 For the College Room by Barbara Mills Dewell, page 4 The Junior-Senior Banquet by Viola Jammer and Pauline Peacock, page 4 Picnic Preparations by Louise Evans Doole, page 5 Finding Yourself by H. M. Hamlin, page 6 Stories of the Sand by Katherine Holden, page 7 Appropriate Pictures for the Home by Amanda Jacobson, page 8 The Individual Scarf by Rhea Fern Schultz, page 9 Using Your Kodak by H. P. Doole, page 10 Something Plus by Laura E. Bublitz, page 11 The Ideal Homemaker by Rosalie Larson, page 12 University Life in France by Mercie Carley, page 12 Homemaker as Citizen by Jeanette Beyer, page 13 Who’s There and Where by Dryden Quist, page 14 Editorial, page 15 The Eternal Question, page 1

    Membrane binding of antimicrobial peptides is modulated by lipid charge modification

    Get PDF
    Peptide interactions with lipid bilayers play a key role in a range of biological processes and depend on electrostatic interactions between charged amino acids and lipid headgroups. Antimicrobial peptides (AMPs) initiate the killing of bacteria by binding to and destabilizing their membranes. The multiple peptide resistance factor (MprF) provides a defense mechanism for bacteria against a broad range of AMPs. MprF reduces the negative charge of bacterial membranes through enzymatic conversion of the anionic lipid phosphatidyl glycerol (PG) to either zwitterionic alanyl-phosphatidyl glycerol (Ala-PG) or cationic lysyl-phosphatidyl glycerol (Lys-PG). The resulting change in the membrane charge is suggested to reduce the binding of AMPs to membranes, thus impeding downstream AMP activity. Using coarse-grained molecular dynamics to investigate the effects of these modified lipids on AMP binding to model membranes, we show that AMPs have substantially reduced affinity for model membranes containing Ala-PG or Lys-PG. More than 5000 simulations in total are used to define the relationship between lipid bilayer composition, peptide sequence (using five different membrane-active peptides), and peptide binding to membranes. The degree of interaction of a peptide with a membrane correlates with the membrane surface charge density. Free energy profile (potential of mean force) calculations reveal that the lipid modifications due to MprF alter the energy barrier to peptide helix penetration of the bilayer. These results will offer a guide to the design of novel peptides, which addresses the issue of resistance via MprF-mediated membrane modification

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the β tensor, β_(zzz) and β_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, β_(zzz) dominates in all cases, whereas the Stark analyses indicate that β_(zyy) is dominant in the shorter chromophores, but β_(zzz) and β_(zyy) are similar for the extended species. In contrast, finite field calculations predict that β_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior
    corecore