526 research outputs found

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Observation of tW production in the single-lepton channel in pp collisions at root s=13 TeV

    Get PDF
    A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at root s = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb(-1) collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant t (t) over bar background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 +/- 4 (stat) +/- 12 (syst) pb, consistent with the standard model.Peer reviewe

    Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at root s=13 TeV

    Get PDF
    Abstract:A measurement of the top quark mass is performed using a data sample en-riched with single top quark events produced in thetchannel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb−1, recorded at√s= 13TeV by the CMS experiment at the LHC in 2016. Candidate events are selectedby requiring an isolated high-momentum lepton (muon or electron) and exactly two jets,of which one is identified as originating from a bottom quark. Multivariate discriminantsare designed to separate the signal from the background. Optimized thresholds are placedon the discriminant outputs to obtain an event sample with high signal purity. The topquark mass is found to be172.13+0.76−0.77GeV, where the uncertainty includes both the sta-tistical and systematic components, reaching sub-GeV precision for the first time in thisevent topology. The masses of the top quark and antiquark are also determined separatelyusing the lepton charge in the final state, from which the mass ratio and difference aredetermined to be0.9952+0.0079−0.0104and0.83+1.79−1.35GeV, respectively. The results are consistentwithCPTinvariance

    Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the tau tau bb final state at 13 TeV

    Get PDF
    A search for a heavy Higgs boson H decaying into the observed Higgs boson h with a mass of 125 GeV and another Higgs boson h(S) is presented. The h and h(S) bosons are required to decay into a pair of tau leptons and a pair of b quarks, respectively. The search uses a sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13TeV, corresponding to an integrated luminosity of 137 fb(-1). Mass ranges of 240-3000 GeV for m(H) and 60-2800 GeV for m(hS) are explored in the search. No signal has been observed. Model independent 95% confidence level upper limits on the product of the production cross section and the branching fractions of the signal process are set with a sensitivity ranging from 125 fb (for m(H) = 240 GeV) to 2.7 fb (for m(H) = 1000 GeV). These limits are compared to maximally allowed products of the production cross section and the branching fractions of the signal process in the next-to-minimal supersymmetric extension of the standard model.Peer reviewe

    Systematic quark/gluon identification with ratios of likelihoods

    No full text
    Abstract Discriminating between quark- and gluon-initiated jets has long been a central focus of jet substructure, leading to the introduction of numerous observables and calculations to high perturbative accuracy. At the same time, there have been many attempts to fully exploit the jet radiation pattern using tools from statistics and machine learning. We propose a new approach that combines a deep analytic understanding of jet substructure with the optimality promised by machine learning and statistics. After specifying an approximation to the full emission phase space, we show how to construct the optimal observable for a given classification task. This procedure is demonstrated for the case of quark and gluons jets, where we show how to systematically capture sub-eikonal corrections in the splitting functions, and prove that linear combinations of weighted multiplicity is the optimal observable. In addition to providing a new and powerful framework for systematically improving jet substructure observables, we demonstrate the performance of several quark versus gluon jet tagging observables in parton-level Monte Carlo simulations, and find that they perform at or near the level of a deep neural network classifier. Combined with the rapid recent progress in the development of higher order parton showers, we believe that our approach provides a basis for systematically exploiting subleading effects in jet substructure analyses at the Large Hadron Collider (LHC) and beyond

    Strange quark as a probe for new physics in the Higgs sector

    No full text
    This paper describes a novel algorithm for tagging jets originating from the hadronisation of strange quarks (strange-tagging) with the future International Large Detector (ILD) at the International Linear Collider (ILC). It also presents the first application of such a strange-tagger to a Higgs to strange (hssˉh \rightarrow s\bar{s}) analysis with the P(e,e+)=(80%,+30%)P(e^-,e^+) = (-80\%,+30\%) polarisation scenario, corresponding to 900 fb1^{-1} of the initial proposed 2000 fb1^{-1} of data which will be collected by ILD during its first 10 years of data taking at s=250\sqrt{s} = 250 GeV. Upper limits on the Standard Model Higgs-strange coupling strength modifier, κs\kappa_s, are derived at the 95% confidence level to be 7.14. The paper includes as well a preliminary study of a Ring Imaging Cherenkov (RICH) system capable of discriminating between kaons and pions at high momenta (up to 25 GeV), and thus enhancing strange-tagging performance at future Higgs factory detectors
    corecore