20 research outputs found

    Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage

    Get PDF
    This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000-2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV-infected cohorts was concentrated in two sub-regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%-55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%-78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%-74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio-temporal and genetic data is likely to yield greater insight in future studies

    Isolation and characterization of an atypical Siberian sturgeon herpesvirus (SbSHV) strain in Russia: novel North-American Acipenserid herpesvirus 2 strain in Europe?

    Get PDF
    Siberian sturgeon herpesvirus (SbSHV) was isolated in Russia for the first time in 2006. Nine SbSHV isolates were recovered from different fish hatcheries producing the same CPE in cell cultures, the same clinical signs and mortality kinetics in virus-infected fish, the same virus neutralization pattern, and shared identical nucleotide sequences. In 2011 a new isolate was recovered from juvenile sturgeon, which caused completely different CPE. That isolate was not readily neutralized by Siberian sturgeon hyperimmune antisera and its DNA was not recognized by the routine PCR developed for SbSHV detection. Molecular study of the novel isolate revealed that it was more closely related to North-American Acipenserid herpesvirus 2 (AciHV-2) isolates from white sturgeon, while the genome sequences of the former SbSHV isolates showed high similarity to the AciHV-2 isolated from shortnose sturgeon. While clinical signs and mortality caused by the novel isolate in infected Siberian sturgeon were similar to those of the formerly described SbSHV isolates, the incubation period and mean time to death produced by the novel isolate were twice as long. The differences between the former isolates and the recent one suggest that a novel SbSHV strain emerged in Europe and the molecular findings imply its North-American origin

    Managing marine disease emergencies in an era of rapid change

    Get PDF
    Infectious marine diseases can decimate populations and are increasing among some taxa due to global change and our increasing reliance on marine environments. Marine diseases become emergencies when significant ecological, economic or social impacts occur. We can prepare for and manage these emergencies through improved surveillance, and the development and iterative refinement of approaches to mitigate disease and its impacts. Improving surveillance requires fast, accurate diagnoses, forecasting disease risk and real-time monitoring of disease-promoting environmental conditions. Diversifying impact mitigation involves increasing host resilience to disease, reducing pathogen abundance and managing environmental factors that facilitate disease. Disease surveillance and mitigation can be adaptive if informed by research advances and catalysed by communication among observers, researchers and decision-makers using information-sharing platforms. Recent increases in the awareness of the threats posed by marine diseases may lead to policy frameworks that facilitate the responses and management that marine disease emergencies require

    2021 Taxonomic Update Of Phylum Negarnaviricota (Riboviria: Orthornavirae), Including The Large Orders Bunyavirales And Mononegavirales:Negarnaviricota Taxonomy Update 2021

    Get PDF

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    Rapid Diagnostic Test to Detect and Discriminate Infectious Hematopoietic Necrosis Virus (IHNV) Genogroups U and M to Aid Management of Pacific Northwest Salmonid Populations

    No full text
    Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonids in North America, Europe, and Asia that is phylogenetically classified into five major virus genogroups (U, M, L, E, and J). The geographic range of the U and M genogroup isolates overlap in the North American Columbia River Basin and Washington Coast region, where these genogroups pose different risks depending on the species of Pacific salmon (Oncorhynchus spp.). For certain management decisions, there is a need to both test for IHNV presence and rapidly determine the genogroup. Herein, we report the development and validation of a U/M multiplex reverse transcription, real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) protein gene. The new U/M RT-rPCR is a rapid, sensitive, and repeatable assay capable of specifically discriminating between North American U and M genogroup IHNV isolates. However, one M genogroup isolate obtained from commercially cultured Idaho rainbow trout (O. mykiss) showed reduced sensitivity with the RT-rPCR test, suggesting caution may be warranted before applying RT-rPCR as the sole surveillance test in areas associated with the Idaho trout industry. The new U/M assay had high diagnostic sensitivity (DSe > 94%) and specificity (DSp > 97%) in free-ranging adult Pacific salmon, when assessed relative to cell culture, the widely accepted reference standard, as well as the previously validated universal N RT-rPCR test. The high diagnostic performance of the new U/M assay indicates the test is suitable for surveillance, diagnosis, and confirmation of IHNV in Pacific salmon from the Pacific Northwest regions where the U and M genogroups overlap

    ICTV Virus Taxonomy Profile: Rhabdoviridae 2022

    Get PDF
    The family Rhabdoviridae comprises viruses with negative-sense (−) RNA genomes of 10–16 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants or animals, including mammals, birds, reptiles, amphibians or fish, as well as arthropods, which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish or agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Rhabdoviridae, which is available at ictv.global/report/rhabdoviridae.Instituto de Patología VegetalFil: Walker, Peter J. University of Queensland. ​School of Chemistry and Molecular Biosciences; AustraliaFil: Freitas-Astúa, Juliana. Brazilian Agricultural Research Corporation; BrasilFil: Bejerman, Nicolas Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Bejerman, Nicolas Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Blasdell, Kim R. ​CSIRO Health and Biosecurity; AustraliaFil: Breyta, Rachel. University of Washington; Estados UnidosFil: Dietzgen, Ralf G. University of Queensland. Queensland Alliance for Agriculture and Food Innovation; AustraliaFil: Fooks, Anthony R. Animal and Plant Health Agency Addlestone; Reino UnidoFil: Kondo, Hideki. Okayama University. Institute of Plant Science and Resources; JapónFil: Kurath, Gael. Western Fisheries Research Center; Estados UnidosFil: Kuzmin, Ivan V. University of Texas Medical Branch; Estados UnidosFil: Whitfield, Anna E. North Carolina State University. Department of Entomology and Plant Pathology; Estados Unido

    Managing marine disease emergencies in an era of rapid change

    Get PDF
    International audienceInfectious marine diseases can decimate populations and are increasing among some taxa due to global change and our increasing reliance on marine environments. Marine diseases become emergencies when significant ecological, economic or social impacts occur. We can prepare for and manage these emergencies through improved surveillance, and the development and iterative refinement of approaches to mitigate disease and its impacts. Improving surveillance requires fast, accurate diagnoses, forecasting disease risk and real-time monitoring of disease-promoting environmental conditions. Diversifying impact mitigation involves increasing host resilience to disease, reducing pathogen abundance and managing environmental factors that facilitate disease. Disease surveillance and mitigation can be adaptive if informed by research advances and catalysed by communication among observers, researchers and decision-makers using information-sharing platforms. Recent increases in the awareness of the threats posed by marine diseases may lead to policy frameworks that facilitate the responses and management that marine disease emergencies require
    corecore