944 research outputs found

    A Model Behind the Standard Model

    Get PDF
    In spite of its many successes, the Standard Model makes many empirical assumptions in the Higgs and fermion sectors for which a deeper theoretical basis is sought. Starting from the usual gauge symmetry u(1)×su(2)×su(3)u(1) \times su(2) \times su(3) plus the 3 assumptions: (A) scalar fields as vielbeins in internal symmetry space \cite{framevec}, (B) the ``confinement picture'' of symmetry breaking \cite{tHooft,Banovici}, (C) generations as ``dual'' to colour \cite{genmixdsm}, we are led to a scheme which offers: (I) a geometrical significance to scalar fields, (II) a theoretical criterion on what scalar fields are to be introduced, (III) a partial explanation of why su(2)su(2) appears broken while su(3)su(3) confines, (IV) baryon-lepton number (B - L) conservation, (V) the standard electroweak structure, (VI) a 3-valued generation index for leptons and quarks, and (VII) a dynamical system with all the essential features of an earlier phenomenological model \cite{genmixdsm} which gave a good description of the known mass and mixing patterns of quarks and leptons including neutrino oscillations. There are other implications the consistency of which with experiment, however, has not yet been systematically explored. A possible outcome is a whole new branch of particle spectroscopy from su(2)su(2) confinement, potentially as rich in details as that of hadrons from colour confinement, which will be accessible to experiment at high energy.Comment: 66 pages, added new material on phenomenology, and some new reference

    Top Quark Spin Polarization in ep Collision

    Full text link
    We discuss the degree of spin polarization of single top quarks produced via WgWg fusion process in epep collision at TESLA+HERAp and CLIC+LHC energies s=1.6\sqrt{s}=1.6 and 5.3 TeV. For ebtνˉeb \to t \bar{\nu} subprocess we show that the top quark spin is completely polarized when the spin basis is chosen in the direction of the incoming positron beam in the rest frame of top quark. A description on how to combine the cross sections of e+btνˉe^{+}b\to t\bar{\nu} and e+gtbˉνˉe^{+}g\to t\bar{b}\bar{\nu} processes is given. e+e^{+}-beam direction is taken to be the favorite top quark spin decomposition axis in its rest frame and it is found to be comparable with the ones in pppp collision. It is argued that theoretical simplicity and experimental clearness are the advantage of epep collision.Comment: Revised version of Phys. Rev. D69 (2004)03401

    Euclidean Preferences, Option Sets and Strategy Proofness

    Get PDF
    In this note, we use the technique of option sets to sort out the implications of coalitional strategyproofness in the spatial setting. We also discuss related issues and open problems

    New Angle on the Strong CP and Chiral Symmetry Problems from a Rotating Mass Matrix

    Get PDF
    It is shown that when the mass matrix changes in orientation (rotates) in generation space for changing energy scale, then the masses of the lower generations are not given just by its eigenvalues. In particular, these masses need not be zero even when the eigenvalues are zero. In that case, the strong CP problem can be avoided by removing the unwanted θ\theta term by a chiral transformation in no contradiction with the nonvanishing quark masses experimentally observed. Similarly, a rotating mass matrix may shed new light on the problem of chiral symmetry breaking. That the fermion mass matrix may so rotate with scale has been suggested before as a possible explanation for up-down fermion mixing and fermion mass hierarchy, giving results in good agreement with experiment.Comment: 14 page

    Chiral condensates from tau decay: a critical reappraisal

    Get PDF
    The saturation of QCD chiral sum rules is reanalyzed in view of the new and complete analysis of the ALEPH experimental data on the difference between vector and axial-vector correlators (V-A). Ordinary finite energy sum rules (FESR) exhibit poor saturation up to energies below the tau-lepton mass. A remarkable improvement is achieved by introducing pinched, as well as minimizing polynomial integral kernels. Both methods are used to determine the dimension d=6 and d=8 vacuum condensates in the Operator Product Expansion, with the results: {O}_{6}=-(0.00226 \pm 0.00055) GeV^6, and O_8=-(0.0053 \pm 0.0033) GeV^8 from pinched FESR, and compatible values from the minimizing polynomial FESR. Some higher dimensional condensates are also determined, although we argue against extending the analysis beyond dimension d = 8. The value of the finite remainder of the (V-A) correlator at zero momentum is also redetermined: \Pi (0)= -4 \bar{L}_{10}=0.02579 \pm 0.00023. The stability and precision of the predictions are significantly improved compared to earlier calculations using the old ALEPH data. Finally, the role and limits of applicability of the Operator Product Expansion in this channel are clarified.Comment: Replaced versio

    Quark masses in QCD: a progress report

    Full text link
    Recent progress on QCD sum rule determinations of the light and heavy quark masses is reported. In the light quark sector a major breakthrough has been made recently in connection with the historical systematic uncertainties due to a lack of experimental information on the pseudoscalar resonance spectral functions. It is now possible to suppress this contribution to the 1% level by using suitable integration kernels in Finite Energy QCD sum rules. This allows to determine the up-, down-, and strange-quark masses with an unprecedented precision of some 8-10%. Further reduction of this uncertainty will be possible with improved accuracy in the strong coupling, now the main source of error. In the heavy quark sector, the availability of experimental data in the vector channel, and the use of suitable multipurpose integration kernels allows to increase the accuracy of the charm- and bottom-quarks masses to the 1% level.Comment: Invited review paper to be published in Modern Physics Letters

    Chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner relation

    Get PDF
    The next to leading order chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, δπ\delta_\pi, the value δπ=(6.2,±1.6)\delta_\pi = (6.2, \pm 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate 2GeV=(267±5MeV)3 \simeq \equiv |_{2\,\mathrm{GeV}} = (- 267 \pm 5 MeV)^3. As a byproduct, the chiral perturbation theory (unphysical) low energy constant H2rH^r_2 is predicted to be H2r(νχ=Mρ)=(5.1±1.8)×103H^r_2 (\nu_\chi = M_\rho) = - (5.1 \pm 1.8)\times 10^{-3}, or H2r(νχ=Mη)=(5.7±2.0)×103H^r_2 (\nu_\chi = M_\eta) = - (5.7 \pm 2.0)\times 10^{-3}.Comment: A comment about the value of the strong coupling has been added at the end of Section 4. No change in results or conslusion

    Formation and relaxation kinetics of starch-particle complexes

    Get PDF
    © The Royal Society of Chemistry.The formation and relaxation kinetics of starch-particle complexes were investigated in this study. The combination of cationic nanoparticles in suspension and anionic starch in solution gave rise to aggregate formation which was studied by dynamic light scattering, revealing the initial adsorption of the starch molecules on the particle surface. By examining the stability ratio, W, it was found that even in the most destabilized state, i.e. at charge neutralization, the starch chains had induced steric stabilization to the system. At higher particle and starch concentrations relaxation of the aggregates could be seen, as monitored by a decrease in turbidity with time. This relaxation was evaluated by fitting the data to the Kohlrausch-Williams-Watts function. It was found that irrespective of the starch to particle charge ratio the relaxation time was similar. Moreover, a molecular weight dependence on the relaxation time was found, as well as a more pronounced initial aggregated state for the higher molecular weight starch. This initial aggregate state could be due to bridging flocculation. With time, as the starch chains have relaxed into a final conformation on the particle surface, bridging will be less important and is gradually replaced by patches that will cause patchwise flocculation. After an equilibration time no molecular weight dependence on aggregation could be seen, which confirms the patchwise flocculation mechanism

    Measuring effective electroweak couplings in single top production at the LHC

    Full text link
    We study the mechanism of single top production at the LHC in the framework of an effective electroweak Lagrangian, analyzing the sensitivity of different observables to the magnitude of the effective couplings that parametrize new physics beyond the Standard Model. The observables relevant to the distinction between left and right effective couplings involve in practice the measurement of the spin of the top and this can be achieved only indirectly by measuring the angular distribution of its decay products. We show that the presence of effective right-handed couplings implies that the top is not in a pure spin state. A unique spin basis is singled out which allows one to connect top decay products angular distribution with the polarized top differential cross section. We present a complete analytical expression of the differential polarized cross section of the relevant perturbative subprocess including general effective couplings. The mass of the bottom quark, which actually turns out to be more relevant than naively expected, is retained. Finally we analyze different aspects the total cross section relevant to the measurement of new physics through the effective couplings. The above analysis also applies to anti-top production in a straightforward way.Comment: 38 pages, 17 figure

    Top quark associated production of topcolor pions at hadron colliders

    Get PDF
    We investigate the associated production of a neutral physical pion with top quarks in the context of topcolor assisted technicolor. We find that single-top associated production does not yield viable rates at either the Tevatron or LHC. tt-associated production at the Tevatron is suppressed relative to Standard Model ttH, but at the LHC is strongly enhanced and would allow for easy observation of the main decay channels to bottom quarks, and possible observation of the decay to gluons.Comment: 13 pages, 4 figures, submitted to PR
    corecore