21 research outputs found

    Something to Sneeze At: Nebraska\u27s Airborne Pollen

    Get PDF
    For those of us whose noses know (and don\u27t like) pollen, late October is a time for celebration in Nebraska because it is the end of the hay fever season. When one\u27s nose is a sensitive bio-detector of the presence of pollen, one\u27s brain usually appreciates putting a name to whatever is causing the itchy eyes and runny nose. The job of putting names on the types of pollen in the air has been done by a dedicated team of pollen counters in the Division of Botany, University of Nebraska State Museum. This group, led by Curator Peg Bolick, has been catching, counting, and identifying these allergens since 1990. They do this five days a week from late February through mid-October each year. Problem pollen almost always comes from plants that use wind to transport their pollen to another plant. The chance of an individual grain finding the flower of another plant of the same species is much smaller with wind pollination than it is with animal pollination. Wind-pollinated plants compensate for the lack of precision by producing millions of extra pollen grains, some of which land in noses. Pollen from animal-pollinated plants is sticky, usually forming clumps that are too large to remain in the air very long. However, Nebraska\u27s strong winds occasionally strip these sticky grains from flowers and carry them to noses or pollen samplers. Air-borne pollen has a more restricted size range than that carried by animals. Pollen grains are measured in microns, a unit that is one millionth of a meter. The largest pollen grains, produced by plants that use animals for pollination, are barely visible to the naked eye at about 250 microns (one fourth of a millimeter). The size range for pollen that is transported by wind is an order of magnitude smaller. Unless it has air bladders like pine pollen, grains that are much larger than 100 microns (the size of corn pollen) usually fall out of the air before traveling more than a few meters. At the other end of the scale, a pollen grain smaller than ten microns (the size of ragweed pollen) cannot be caught efficiently by plant stigmas, the part of the flower that leads to the ovule for fertilization

    Movement of Crop Transgenes into Wild Plants

    Get PDF
    Despite the great potential and increasing importance of other weed control options (Turner et al. 1992) and unwanted environmental side effects of some herbicides, herbicides constitute a very important means of weed control. The escape of herbicide resistance genes to wild, weedy plants could cause more severe weed problems, and presents a very real threat to the efficacy of herbicides as a weed control option. Therefore, management strategies that prevent, or reduce the likelihood and frequency of HRG escape through containment methods are advisable, as are mitigation plans in the event of HRG escape to wild plants

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Something to Sneeze At: Nebraska\u27s Airborne Pollen

    Get PDF
    For those of us whose noses know (and don\u27t like) pollen, late October is a time for celebration in Nebraska because it is the end of the hay fever season. When one\u27s nose is a sensitive bio-detector of the presence of pollen, one\u27s brain usually appreciates putting a name to whatever is causing the itchy eyes and runny nose. The job of putting names on the types of pollen in the air has been done by a dedicated team of pollen counters in the Division of Botany, University of Nebraska State Museum. This group, led by Curator Peg Bolick, has been catching, counting, and identifying these allergens since 1990. They do this five days a week from late February through mid-October each year. Problem pollen almost always comes from plants that use wind to transport their pollen to another plant. The chance of an individual grain finding the flower of another plant of the same species is much smaller with wind pollination than it is with animal pollination. Wind-pollinated plants compensate for the lack of precision by producing millions of extra pollen grains, some of which land in noses. Pollen from animal-pollinated plants is sticky, usually forming clumps that are too large to remain in the air very long. However, Nebraska\u27s strong winds occasionally strip these sticky grains from flowers and carry them to noses or pollen samplers. Air-borne pollen has a more restricted size range than that carried by animals. Pollen grains are measured in microns, a unit that is one millionth of a meter. The largest pollen grains, produced by plants that use animals for pollination, are barely visible to the naked eye at about 250 microns (one fourth of a millimeter). The size range for pollen that is transported by wind is an order of magnitude smaller. Unless it has air bladders like pine pollen, grains that are much larger than 100 microns (the size of corn pollen) usually fall out of the air before traveling more than a few meters. At the other end of the scale, a pollen grain smaller than ten microns (the size of ragweed pollen) cannot be caught efficiently by plant stigmas, the part of the flower that leads to the ovule for fertilization

    Biomarkers of Environmental Enteropathy, Inflammation, Stunting, and Impaired Growth in Children in Northeast Brazil

    No full text
    Critical to the design and assessment of interventions for enteropathy and its developmental consequences in children living in impoverished conditions are non-invasive biomarkers that can detect intestinal damage and predict its effects on growth and development. We therefore assessed fecal, urinary and systemic biomarkers of enteropathy and growth predictors in 375 6–26 month-old children with varying degrees of malnutrition (stunting or wasting) in Northeast Brazil. 301 of these children returned for followup anthropometry after 2-6m. Biomarkers that correlated with stunting included plasma IgA anti-LPS and anti-FliC, zonulin (if >12m old), and intestinal FABP (I-FABP, suggesting prior barrier disruption); and with citrulline, tryptophan and with lower serum amyloid A (SAA) (suggesting impaired defenses). In contrast, subsequent growth was predicted in those with higher fecal MPO or A1AT and also by higher L/M, plasma LPS, I-FABP and SAA (showing intestinal barrier disruption and inflammation). Better growth was predicted in girls with higher plasma citrulline and in boys with higher plasma tryptophan. Interactions were also seen with fecal MPO and neopterin in predicting subsequent growth impairment. Biomarkers clustered into markers of 1) functional intestinal barrier disruption and translocation, 2) structural intestinal barrier disruption and inflammation and 3) systemic inflammation. Principle components pathway analyses also showed that L/M with %L, I-FABP and MPO associate with impaired growth, while also (like MPO) associating with a systemic inflammation cluster of kynurenine, LBP, sCD14, SAA and K/T. Systemic evidence of LPS translocation associated with stunting, while markers of barrier disruption or repair (A1AT and Reg1 with low zonulin) associated with fecal MPO and neopterin. We conclude that key noninvasive biomarkers of intestinal barrier disruption, LPS translocation and of intestinal and systemic inflammation can help elucidate how we recognize, understand, and assess effective interventions for enteropathy and its growth and developmental consequences in children in impoverished settings

    Fecal MPO, Fecal alpha-1-antitrypsin (A1AT), and plasma LPS, FABP and SAA each predicts subsequent growth impairment.

    No full text
    <p>a: For MPO, <i>p</i> = 0.028; n = 266 when correcting for age and gender, and independent of breastfeeding status (that showed no correlation in these 6-26m old children) and of age. b: For A1AT, n = 237; <i>p</i> = 0.042; and A1AT also correlates with “catchup WAZ” as well, <i>p</i> = 0.035 after correcting for age and gender. c: For urine L/M, higher values correlated (controlling for age and gender) with impaired growth (delta HAZ) (<i>r</i> = -0.173; <i>p</i> = 0.009; n = 230). d: For plasma LPS (ie lower LUM), higher values correlated with impaired growth (delta HAZ) (<i>r</i> = 0.151; <i>p</i> = 0.017; n = 251). e: For plasma FABP, higher values correlated with impaired growth (delta HAZ) (r = -0.134; <i>p</i> = 0.042; n = 231). f: For plasma SAA, higher values correlated with impaired growth (delta HAZ) (r = -0.132; p = 0.046; n = 231).</p
    corecore