123 research outputs found

    Study of the eastern margin of the Antarctic Peninsula based on gravimetric and magnetic data

    Get PDF
    La península Antártica, constituida fundamentalmente por rocas ígneas y metamórficas, forma parte del cinturón orogénico andino de edad mesozoico-cenozoica, y fue separada de Sudamérica tras la apertura del paso de Drake desde el Oligoceno. La península está formada por procesos relacionados con la subducción de la corteza oceánica del Pacífico en su margen occidental, que aún hoy es activa al NE de la zona de fractura Hero, dando lugar a la formación de la cuenca de trasarco de Bransfield. El margen oriental es el menos conocido por su inaccesibilidad, es de tipo pasivo y se caracteriza por una plataforma continental extensa con un tránsito gradual hacia el dominio oceánico del mar de Weddell. La modelización de 2 perfiles magnéticos y gravimétricos indica [1] que la estructura cortical presenta un adelgazamiento progresivo de la corteza hacia el SE, [2] una gran variación del espesor de sedimentos y [3] la existencia de una zona de diques basálticos asociada al borde occidental del mar de WeddellThe Antarctic Peninsula, mainly composed of igneous and metamorphic rocks, was separated from South America during the opening of the Drake Passage from the Oligocene, as part of the Mesozoic-Cenozoic Andean orogenic belt. It was formed by processes related to the subduction of Pacific Ocean floor at its western margin, still active northwards of the Hero fracture zone, where the Bransfield backarc basin was developed. The eastern margin is less known due to its inaccessibility and is described as a continental passive margin gradually in transition to the Weddell Sea ocean floor. The modelling of 2 magnetic and gravimetric profiles shows [1] that the eastern margin of the Antarctic Peninsula depicts a progressively thinning of the upper crust towards the SE, [2] a remarkable sediment thickness changes, and [3] basaltic dikes related to the western edge of the Weddell Se

    Bouguer anomalies of the NW Iberian continental margin and the adjacent abyssal plains

    Full text link
    The NW Iberian continental margin has a complex structure, resulting from the succession of several rifting episodes close to a ridge triple junction, and a superimposed partial tectonic inversion stage. The wide-ranging physiography matches the diverse tectonic deformation domains related to its evolution. Each deformation domain has a distinctive gravity signal, so the detailed Bouguer anomaly map presented here is a good first approach to the regional study of the whole margin. Moreover, as the presented chart is a complete Bouguer anomaly map (including terrain corrections), its analysis and interpretation can be done in terms of density, geometry and depth variations below the seafloor. This map is mainly based on the dataset obtained during seven one-month surveys carried out in the frame of the Spanish Economic Exclusive Zone project, and also includes two 2 + 3/4D density models illustrating the deep structure of the marginThe marine surveys are supported by the Spanish Defense Ministry, as this is the managing body of the Spanish Exclusive Economic Zone Project (SEEZ). Additionally, the Universidad Complutense de Madrid funds travel expenses of its personnel embarking on the surveys, as does the Instituto Geológico y Minero de España in the frame of the internal project entitled ‘Plan de Investigaciones Geológicas y Geofísicas de la Zona Económica Exclusiva Española (ZEEE)

    Mantle flow and deep electrical anisotropy in a main gateway: MT study in Tierra del Fuego

    Get PDF
    Asthenospheric mantle flow drives lithospheric plate motion and constitutes a relevant feature of Earth gateways. It most likely influences the spatial pattern of seismic velocity and deep electrical anisotropies. The Drake Passage is a main gateway in the global pattern of mantle flow. The separation of the South American and Antarctic plates since the Oligocene produced this oceanic and mantle gateway connecting the Pacific and Atlantic oceans. Here we analyze the deep crustal and upper mantle electrical anisotropy of its northern margin using long period magnetotelluric data from Tierra del Fuego (Argentina). The influence of the surrounding oceans was taken into account to constrain the mantle electrical conductivity features. 3D electrical models were calculated to fit 18 sites responses in this area. The phase tensor pattern for the longest periods reveals the existence of a well-defined NW-SE electrical conductivity anisotropy in the upper mantle. This anisotropy would result from the mantle flow related to the 30 to 6 Ma West Scotia spreading, constricted by the subducted slab orientation of the Pacific plate, rather than the later eastward mantle flow across the Drake Passage. Deep electrical anisotropy proves to be a key tool for a better understanding of mantle flow.This work was supported through projects CTM2014-60451-C2-02/01 and CTM2017-89711-C2-2/1-P from Ministry of Science, Innovation and Universities of Spain and the RNM-148 from Junta de Andalucía (Spain)

    Drake-Scotia Sea gateways: onset and evolution of the Drake Passage and Scotia Sea, implications for global ocean circulation and climate

    Get PDF
    Australasian IODP Regional Planing Workshop (2017. Sidney)Instituto Geológico y Minero de España, EspañaInstituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, EspañaIstituto Nazionale di Oceanografia e Geofisica Sperimentale, ItaliaSan Diego State University, Estados UnidosPeer reviewe

    Sedimentary thickness distribution in the Protector and Pirie basins (Scotia Sea, Antarctica): control factors

    Get PDF
    Se ha realizado un análisis de estratigrafía sísmica mediante perfiles sísmicos de reflexión multicanal en las cuencas de Protector y Pirie, las cuales están ubicadas en el en el Mar de Scotia meridional, en las proximidades del límite de placas Scotia-Antártica. Mediante este análisis se ha determinado la distribución de los deposcentros sedimentarios más importantes, lo que ha permitido comprobar que la distribución sedimentaria en dichas cuencas está controlada por la morfoestructura del basamento e influenciada por la distribución de las masas de agua profundas. Los resultados obtenidos permiten establecer que ambas cuencas constituyen un buen ejemplo de cuencas oceánicas profundas aisladas y desnutridas, sin aportes continentales y bajo la influencia de corrientes de fondo activas relacionadas con el Agua Profunda Circumpolar Antártica (CDW) y con el Agua Profunda procedente del Mar de Weddell (WSDW)The analysis of multichannel seismic profiles reveals that the distribution of sedimentary depocenters within the Protector and Pirie basins of the southern Scotia Sea, close to the Scotia-Antarctica plate boundary, is largely due to the morpho-structural control of the basement and influenced by the distribution of bottom currents. Both basins constituted a good example of small isolated and undernourished deep basins, lacking major continental inputs and under the influence of active bottom currents related to both the Antarctic Circumpolar deep Water and the Weddell Sea Deep Wate

    Oceanographic and climatic consequences of the tectonic evolution of the southern scotia sea basins, Antarctica

    Get PDF
    The Scotia Sea is a complex geological area located in the Southern Ocean which evolution is closely linked to the opening of the Drake Passage. Structural highs of continental nature derived from the former continental bridge between South America and the Antarctic Peninsula surround the abyssal plains of the Scotia Sea, restricting small isolated sedimentary basins along its southern margin. Morpho-structural and seismo-stratigraphic analyses of multichannel seismic reflection profiles, and additional geophysical data available in the region, have been conducted, decoding regional and global implications of the basins' evolution. The main aim of this work is to describe the stratigraphic evolution of the southern Scotia Sea basins, from their opening in the back-arc tectonic context of the Scotia Sea, to the last oceanographic changes which have carried on global climatic implications. The evolution of the south Scotia Sea occurred through two major tectonic stages registered in the sedimentary record of the region: 1) the end of the subduction in the northwest part of the Weddell Sea during the early Miocene, which shortened the back-arc subduction trench generating a major change in the regional tectonic field that determined the evolution of the southern basins towards two different types of passive margins: magma-poor and magma-rich; and 2) the full development of the southern Scotia Sea basins during the middle Miocene, that led to the opening of deep oceanic gateways along the South Scotia Ridge. Interplay among tectonics, oceanography and climate is proposed to control the regional sedimentary stacking pattern, with coeval changes globally identified

    Bouguer anomalies of the NW Iberian continental margin and the adjacent abyssal plains

    Get PDF
    The NW Iberian continental margin has a complex structure, resulting from the succession of several rifting episodes close to a ridge triple junction, and a superimposed partial tectonic inversion stage. The wide-ranging physiography matches the diverse tectonic deformation domains related to its evolution. Each deformation domain has a distinctive gravity signal, so the detailed Bouguer anomaly map presented here is a good first approach to the regional study of the whole margin. Moreover, as the presented chart is a complete Bouguer anomaly map (including terrain corrections), its analysis and interpretation can be done in terms of density, geometry and depth variations below the seafloor. This map is mainly based on the dataset obtained during seven one-month surveys carried out in the frame of the Spanish Economic Exclusive Zone project, and also includes two 2 + 3/4D density models illustrating the deep structure of the margin

    Towards 3D databases and harmonized 3D models at IGME-CSIC

    Get PDF
    IGME-CSIC has a highly relevant geological and geophysical database that includes a continuous digital geological cartography at 1:50000; 1:200000 and 1:1000000 scales and a fair amount of geophysical data: gravity, magnetic, well-logs in tiff and LAS format, seismic lines in tiff and SEG-Y format, borehole and petrophysical data, together with other geophysical and geological studies. Since the 2004, an important effort has been done to undertake 3D geological and geophysical modelling ranging from local studies (mineral exploration or CO2 storage sites) to regional geology for a better understanding of the subsurface structure and its geodynamic evolution as a base for other studies on natural hazards or mineral resources. These studies were ¿stand alone¿ and now IGME is designing a new strategy. It includes the available data and models harmonization (stratigraphy sequences, structural interpretations, faults distribution, seismic velocity models, spatial distribution of physical properties such as density and magnetic susceptibility, workflows, methodologies, evaluation of uncertainties, visualization, etc.) to comply with the FAIR (Findable, Accessible, Interoperable and Reusable) data standardization. In this way, the new 3D models will be easily integrated and available from the databases. This strategy includes collaboration with the Bureau de Recherches Géologiques et Minières of France (BRGM) and Laboratório Nacional de Energia e Geologia of Portugal (LNEG) in order to harmonize the Spanish geological data and models with their neighbours across national borders. The first step is being done in the framework of GeoERA projects. Plain-language Summary IGME-CSIC owns a large database that includes a highly valuable geological and geophysical data and geophysical studies containing the interpretation of some of the data of Spain (onshore and offshore) Since 2004 the authors of this work have been working in 3D geological and geophysical modelling that includes local (mineral exploration or CO2 storage sites) and regional studies. The goal is to improve our understanding of the subsurface structures and processes as a base for deepening our knowledge in how the natural hazards occur, how to improve the exploration for mineral resources, etc. These studies were made ad hoc within different projects and now IGME-CSIC is designing a workflow to harmonize these models in order to comply with the FAIR (Findable, Accessible, Interoperable and Reusable) data standardization so the models will be available to being used beyond the initial objectives that generated their creation. This strategy includes collaboration with other European institutions like the Bureau de Recherches Géologiques et Minières of France (BRGM) and Laboratório Nacional de Energia e Geologia of Portugal (LNEG) in order to harmonize the models across national borders. The first step is already being done in the framework of the GeoERA projects

    Onset and development of the Drake Passage and Scotia Sea gateways and its influence on global ocean circulation and climate (IODP proposal)

    Get PDF
    The DRAKE-SCOTIA SEA GATEWAYS is a new multidisciplinary International Ocean Discovery Program (IODP) drilling proposal aimed at determining the time of opening and pattern of development of gateways in the Drake Passage and the adjacent Scotia Sea, and their influence on global ocean circulation, biotic evolution and climate. The Drake Passage with the adjacent Scotia Sea represent one of Earth’s most important oceanic gateways, between the southern tip of South America and the Antarctic Peninsula, a crucial area for water mass exchange between the Pacific Ocean, the Atlantic Ocean and the Weddell Sea, the importance of which is evidence by in many multinational studies. Nevertheless, the region has not been yet drilled for scientific purposes. The objective of this work is to present the main scientific goals of this drilling proposal and its link with the IODP Science Plan for 2013-2023.Department of Earth Sciences, Royal Holloway University, Reino UnidoBritish Antarctic Survey, Reino UnidoDepartment og Geology and Geophysics, Yale University, Estados UnidosGeophysical Department, Geological Survey of Denmark and Greenland, DinamarcaAlfred Wegener Institute, Helmholtz for Polar and Marine Research, AlemaniaInstituto Geológico y Minero de España, EspañaOcean and Earth Science, University of Southampton, Reino UnidoUniversity Texas at Austin, Estados UnidosInstitute of Petroleum Engineering, Heriot-Watt University, Reino UnidoInstituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, EspañaInstituto Andaluz de Ciencias de la Tierra, Universidad de Granada, EspañaCollege of Earth, Ocean and the Environment, University of Delaware, Estados UnidosUniversity New South Wales, AustraliaUniversity Nebraska-Lincoln, Estados UnidosUniversidad de Buenos Aires, Argentin
    corecore