76 research outputs found

    ‘It’s my life: Autonomy and people with intellectual disabilities

    Get PDF
    This article discusses autonomy in the lives of adults with intellectual disabilities. The article draws on inclusive research in Iceland with 25 women and 16 men and employs ideas of relational autonomy from the perspectives of the Nordic relational approach to disability. In this article, we examine autonomy in relation to private life, that is, homes and daily activities. The article demonstrates how practices have improved with time and seem less paternalistic. However, the article also demonstrates that the assistance people with intellectual disabilities receive in their homes often has institutional qualities, and they are often met with belittling perspectives from staff and family members. Furthermore, many did not have access to important information needed to develop individual autonomy and independence, including making their own choices. The research findings suggest that people with intellectual disabilities can with appropriate support develop individual autonomy and make their own choices

    Radiographic closure time of appendicular growth plates in the Icelandic horse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Icelandic horse is a pristine breed of horse which has a pure gene pool established more than a thousand years ago, and is approximately the same size as living and extinct wild breeds of horses. This study was performed to compare the length of the skeletal growth period of the "primitive" Icelandic horse relative to that reported for large horse breeds developed over the recent centuries. This information would provide practical guidance to owners and veterinarians as to when the skeleton is mature enough to commence training, and would be potentially interesting to those scientists investigating the pathogenesis of osteochondrosis. Interestingly, osteochondrosis has not been documented in the Icelandic horse.</p> <p>Methods</p> <p>The radiographic closure time of the appendicular growth plates was studied in 64 young Icelandic horses. The results were compared with previously published closure times reported for other, larger horse breeds. The radiographs were also examined for any signs of developmental orthopaedic diseases. In order to describe further the growth pattern of the Icelandic horse, the total serum alkaline phosphatase (ALP) activity was determined and the height at the withers was measured.</p> <p>Results</p> <p>Most of the examined growth plates were fully closed at the age of approximately three years. The horses reached adult height at this age; however ALP activity was still mildly increased over baseline values. The growth plates in the digits were the first to close at 8.1 to 8.5 months of age, and those in the regions of the distal radius (27.4 to 32.0 months), tuber olecrani (31.5 to 32.2 months), and the stifle (27.0 to 40.1 months) were the last to close. No horse was found to have osteochondrosis type lesions in the neighbouring joints of the evaluated growth plates.</p> <p>Conclusion</p> <p>The Icelandic horse appears to have similar radiographic closure times for most of the growth plates of its limbs as reported for large new breeds of horses developed during the past few centuries. It thus appears that different breeding goals and the intensity of breeding have not altered the length of the growth period in horses. Instead, it can be assumed that the pristine and relatively small Icelandic horse has a slower rate of growth. The appendicular skeleton of Icelandic horses has completed its bone growth in length at approximately 3 years of age, and therefore may be able to enter training at this time.</p

    Effect of circadian rhythm, age, training and acute lameness on serum concentrations of cartilage oligomeric matrix protein (COMP) neo-epitope in horses

    Get PDF
    Molecular serum markers that can identify early reversible osteoarthritis (OA) in horses are lacking. Objectives: We studied serum concentrations of a novel cartilage oligomeric matrix protein (COMP) neo-epitope in horses subjected to short-term exercise and with acute lameness. The effects of circadian rhythm and age were also evaluated. Study design: Longitudinal studies in healthy horses and cross-sectional comparison of lame and non-lame horses. Methods: Sera were collected from five horses before and after short-term interval exercise and during full-day box rest. Sera from 32 acutely lame horses were used to evaluate age-related effects. Independent samples from control horses (n = 41) and horses with acute lameness (n = 71) were included. COMP neo-epitope concentrations were analysed using custom-developed inhibition ELISAs validated for equine serum. The presence of COMP neo-epitope was delineated in healthy and osteoarthritic articular cartilage with immunohistochemistry. Results: COMP neo-epitope concentrations decreased after speed training but returned to baseline levels post-exercise. No correlations between age and serum COMP neo-epitope concentrations were found (r = 0.0013). The mean (±s.d.) serum concentration of COMP neo-epitope in independent samples from non-lame horses was 0.84 ± 0.38 μg/mL, and for lame horses was 5.24 ± 1.83 μg/mL (P<0.001). Antibodies against COMP neo-epitope did not stain normal articular cartilage, but intracytoplasmic staining was found in superficial chondrocytes of mild OA cartilage and in the extracellular matrix of moderately osteoarthritic cartilage. Main limitations: ELISA was based on polyclonal antisera rather than a monoclonal antibody. There is a sex and breed bias within the groups of horses, also it could have been of value to include horses with septic arthritis and tendonitis and investigated joint differences. Conclusions: This COMP neo-epitope can be measured in sera, and results indicate that it could be a biomarker for pathologic fragmentation of cartilage in connection with acute joint lameness.Western Region Research Funding (ALF GBG‐716171), the Swedish‐Norwegian Foundation for Equine Research (H0947014), Swedish Research Council grant (VR 2015‐02959) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS 221‐2013‐317) supported this research.Peer Reviewe

    Location of studies and evidence of effects of herbivory on Arctic vegetation: a systematic map

    Get PDF
    Background: Herbivores modify the structure and function of tundra ecosystems. Understanding their impacts is necessary to assess the responses of these ecosystems to ongoing environmental changes. However, the effects of herbivores on plants and ecosystem structure and function vary across the Arctic. Strong spatial variation in herbivore effects implies that the results of individual studies on herbivory depend on local conditions, i.e., their ecological context. An important first step in assessing whether generalizable conclusions can be produced is to identify the existing studies and assess how well they cover the underlying environmental conditions across the Arctic. This systematic map aims to identify the ecological contexts in which herbivore impacts on vegetation have been studied in the Arctic. Specifically, the primary question of the systematic map was: “What evidence exists on the effects of herbivores on Arctic vegetation?”. Methods: We used a published systematic map protocol to identify studies addressing the effects of herbivores on Arctic vegetation. We conducted searches for relevant literature in online databases, search engines and specialist websites. Literature was screened to identify eligible studies, defined as reporting primary data on herbivore impacts on Arctic plants and plant communities. We extracted information on variables that describe the ecological context of the studies, from the studies themselves and from geospatial data. We synthesized the findings narratively and created a Shiny App where the coded data are searchable and variables can be visually explored. Review findings: We identified 309 relevant articles with 662 studies (representing different ecological contexts or datasets within the same article). These studies addressed vertebrate herbivory seven times more often than invertebrate herbivory. Geographically, the largest cluster of studies was in Northern Fennoscandia. Warmer and wetter parts of the Arctic had the largest representation, as did coastal areas and areas where the increase in temperature has been moderate. In contrast, studies spanned the full range of ecological context variables describing Arctic vertebrate herbivore diversity and human population density and impact. Conclusions: The current evidence base might not be sufficient to understand the effects of herbivores on Arctic vegetation throughout the region, as we identified clear biases in the distribution of herbivore studies in the Arctic and a limited evidence base on invertebrate herbivory. In particular, the overrepresentation of studies in areas with moderate increases in temperature prevents robust generalizations about the effects of herbivores under different climatic scenarios

    Location of studies and evidence of effects of herbivory on Arctic vegetation : a systematic map

    Get PDF
    Background: Herbivores modify the structure and function of tundra ecosystems. Understanding their impacts is necessary to assess the responses of these ecosystems to ongoing environmental changes. However, the effects of herbivores on plants and ecosystem structure and function vary across the Arctic. Strong spatial variation in herbivore effects implies that the results of individual studies on herbivory depend on local conditions, i.e., their ecological context. An important first step in assessing whether generalizable conclusions can be produced is to identify the existing studies and assess how well they cover the underlying environmental conditions across the Arctic. This systematic map aims to identify the ecological contexts in which herbivore impacts on vegetation have been studied in the Arctic. Specifically, the primary question of the systematic map was: "What evidence exists on the effects of herbivores on Arctic vegetation?". Methods: We used a published systematic map protocol to identify studies addressing the effects of herbivores on Arctic vegetation. We conducted searches for relevant literature in online databases, search engines and specialist websites. Literature was screened to identify eligible studies, defined as reporting primary data on herbivore impacts on Arctic plants and plant communities. We extracted information on variables that describe the ecological context of the studies, from the studies themselves and from geospatial data. We synthesized the findings narratively and created a Shiny App where the coded data are searchable and variables can be visually explored. Review findings We identified 309 relevant articles with 662 studies (representing different ecological contexts or datasets within the same article). These studies addressed vertebrate herbivory seven times more often than invertebrate herbivory. Geographically, the largest cluster of studies was in Northern Fennoscandia. Warmer and wetter parts of the Arctic had the largest representation, as did coastal areas and areas where the increase in temperature has been moderate. In contrast, studies spanned the full range of ecological context variables describing Arctic vertebrate herbivore diversity and human population density and impact. Conclusions: The current evidence base might not be sufficient to understand the effects of herbivores on Arctic vegetation throughout the region, as we identified clear biases in the distribution of herbivore studies in the Arctic and a limited evidence base on invertebrate herbivory. In particular, the overrepresentation of studies in areas with moderate increases in temperature prevents robust generalizations about the effects of herbivores under different climatic scenarios.Peer reviewe

    Herbivore diversity effects on Arctic tundra ecosystems: a systematic review

    Get PDF
    Background: Northern ecosystems are strongly influenced by herbivores that differ in their impacts on the ecosystem. Yet the role of herbivore diversity in shaping the structure and functioning of tundra ecosystems has been overlooked. With climate and land-use changes causing rapid shifts in Arctic species assemblages, a better understanding of the consequences of herbivore diversity changes for tundra ecosystem functioning is urgently needed. This systematic review synthesizes available evidence on the effects of herbivore diversity on different processes, functions, and properties of tundra ecosystems. Methods: Following a published protocol, our systematic review combined primary field studies retrieved from bibliographic databases, search engines and specialist websites that compared tundra ecosystem responses to different levels of vertebrate and invertebrate herbivore diversity. We used the number of functional groups of herbivores (i.e., functional group richness) as a measure of the diversity of the herbivore assemblage. We screened titles, abstracts, and full texts of studies using pre-defined eligibility criteria. We critically appraised the validity of the studies, tested the influence of different moderators, and conducted sensitivity analyses. Quantitative synthesis (i.e., calculation of effect sizes) was performed for ecosystem responses reported by at least five articles and meta-regressions including the effects of potential modifiers for those reported by at least 10 articles. Review findings: The literature searches retrieved 5944 articles. After screening titles, abstracts, and full texts, 201 articles including 3713 studies (i.e., individual comparisons) were deemed relevant for the systematic review, with 2844 of these studies included in quantitative syntheses. The available evidence base on the effects of herbivore diversity on tundra ecosystems is concentrated around well-established research locations and focuses mainly on the impacts of vertebrate herbivores on vegetation. Overall, greater herbivore diversity led to increased abundance of feeding marks by herbivores and soil temperature, and to reduced total abundance of plants, graminoids, forbs, and litter, plant leaf size, plant height, and moss depth, but the effects of herbivore diversity were difficult to tease apart from those of excluding vertebrate herbivores. The effects of different functional groups of herbivores on graminoid and lichen abundance compensated each other, leading to no net effects when herbivore effects were combined. In turn, smaller herbivores and large-bodied herbivores only reduced plant height when occurring together but not when occurring separately. Greater herbivore diversity increased plant diversity in graminoid tundra but not in other habitat types. Conclusions: This systematic review underscores the importance of herbivore diversity in shaping the structure and function of Arctic ecosystems, with different functional groups of herbivores exerting additive or compensatory effects that can be modulated by environmental conditions. Still, many challenges remain to fully understand the complex impacts of herbivore diversity on tundra ecosystems. Future studies should explicitly address the role of herbivore diversity beyond presence-absence, targeting a broader range of ecosystem responses and explicitly including invertebrate herbivores. A better understanding of the role of herbivore diversity will enhance our ability to predict whether and where shifts in herbivore assemblages might mitigate or further amplify the impacts of environmental change on Arctic ecosystems

    Health-related quality of life change in patients treated at a multidisciplinary pain clinic

    Get PDF
    Background Multidisciplinary pain management (MPM) is a generally accepted method for treating chronic pain, but heterogeneous outcome measures provide only limited conclusions concerning its effectiveness. Therefore, further studies on the effectiveness of MPM are needed to identify subgroups of patients who benefit, or do not benefit, from these interventions. Our aim was to analyse health-related quality of life (HRQoL) changes after MPM and to identify factors associated with treatment outcomes. Methods We carried out a real world observational follow-up study of chronic pain patients referred to a tertiary multidisciplinary outpatient pain clinic to describe, using the validated HRQoL instrument 15D, the HRQoL change after MPM and to identify factors associated with this change. 1,043 patients responded to the 15D HRQoL questionnaire at baseline and 12 months after the start of treatment. Background data were collected from the pre-admission questionnaire of the pain clinic. Results Fifty-three percent of the patients reported a clinically important improvement and, of these, 81% had a major improvement. Thirty-five percent reported a clinically important deterioration, and 12% had no change in HRQoL. Binary logistic regression analysis revealed that major improvement was positively associated with shorter duration of pain (Peer reviewe

    How Experiences Become Data: The Process of Eliciting Adverse Event, Medical History and Concomitant Medication Reports in Antimalarial and Antiretroviral Interaction Trials.

    Get PDF
    Accurately characterizing a drug's safety profile is essential. Trial harm and tolerability assessments rely, in part, on participants' reports of medical histories, adverse events (AEs), and concomitant medications. Optimal methods for questioning participants are unclear, but different methods giving different results can undermine meta-analyses. This study compared methods for eliciting such data and explored reasons for dissimilar participant responses. Participants from open-label antimalarial and antiretroviral interaction trials in two distinct sites (South Africa, n = 18 [all HIV positive]; Tanzania, n = 80 [86% HIV positive]) were asked about ill health and treatment use by sequential use of (1) general enquiries without reference to particular conditions, body systems or treatments, (2) checklists of potential health issues and treatments, (3) in-depth interviews. Participants' experiences of illness and treatment and their reporting behaviour were explored qualitatively, as were trial clinicians' experiences with obtaining participant reports. Outcomes were the number and nature of data by questioning method, themes from qualitative analyses and a theoretical interpretation of participants' experiences. There was an overall cumulative increase in the number of reports from general enquiry through checklists to in-depth interview; in South Africa, an additional 12 medical histories, 21 AEs and 27 medications; in Tanzania an additional 260 medical histories, 1 AE and 11 medications. Checklists and interviews facilitated recognition of health issues and treatments, and consideration of what to report. Information was sometimes not reported because participants forgot, it was considered irrelevant or insignificant, or they feared reporting. Some medicine names were not known and answers to questions were considered inferior to blood tests for detecting ill health. South African inpatient volunteers exhibited a "trial citizenship", working to achieve researchers' goals, while Tanzanian outpatients sometimes deferred responsibility for identifying items to report to trial clinicians. Questioning methods and trial contexts influence the detection of adverse events, medical histories and concomitant medications. There should be further methodological work to investigate these influences and find appropriate questioning methods

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km &lt;sup&gt;2&lt;/sup&gt; resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km &lt;sup&gt;2&lt;/sup&gt; pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore