30 research outputs found

    Preliminary Evidence for Cell Membrane Amelioration in Children with Cystic Fibrosis by 5-MTHF and Vitamin B12 Supplementation: A Single Arm Trial

    Get PDF
    Cystic fibrosis (CF) is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR). New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF) and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis.A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day) and vitamin B12 (0.5 mg/day). Red blood cells (RBCs) were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i) increased plasma and RBC folate levels; (ii) decreased plasma homocysteine levels; (iii) modified RBC membrane phospholipid fatty acid composition; (iv) increased RBC K(+) content; (v) reduced RBC membrane oxidative damage and HSP70 membrane association.5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF.ClinicalTrials.gov NCT00730509

    A mechanism accounting for the low cellular level of linoleic acid in cystic fibrosis and its reversal by DHA*

    No full text
    Specific fatty acid alterations have been described in the blood and tissues of cystic fibrosis (CF) patients. The principal alterations include decreased levels of linoleic acid (LA) and docosahexaenoic acid (DHA). We investigated the potential mechanisms of these alterations by studying the cellular uptake of LA and DHA, their distribution among lipid classes, and the metabolism of LA in a human bronchial epithelial cell model of CF. CF (antisense) cells demonstrated decreased levels of LA and DHA compared with wild type (WT, sense) cells expressing normal CFTR. Cellular uptake of LA and DHA was higher in CF cells compared with WT cells at 1 h and 4 h. Subsequent incorporation of LA and DHA into most lipid classes and individual phospholipids was also increased in CF cells. The metabolic conversion of LA to n-6 metabolites, including 18:3n-6 and arachidonic acid, was upregulated in CF cells, indicating increased flux through the n-6 pathway. Supplementing CF cells with DHA inhibited the production of LA metabolites and corrected the n-6 fatty acid defect. In conclusion, the evidence suggests that low LA level in cultured CF cells is due to its increased metabolism, and this increased LA metabolism is corrected by DHA supplementation

    Increased Tissue Arachidonic Acid and Reduced Linoleic Acid in a Mouse Model of Cystic Fibrosis Are Reversed by Supplemental Glycerophospholipids Enriched in Docosahexaenoic Acid.

    No full text
    An imbalance in (n-6)/(n-3) PUFA has been reported in cystic fibrosis (CF) patients. Glycerophospholipids enriched in docosahexaenoic acid (GPL-DHA) have been shown to regulate the (n-6)/(n-3) fatty acid ratio in the elderly. Here, we tested the effect of GPL-DHA supplementation on PUFA status in F508del homozygous CF mice. GPL-DHA liposomes were administrated by gavage (60 mg DHA/kg daily, i.e. at maximum 1.4 mg DHA/d) to 1.5-mo-old CF mice (CF+DHA) and their corresponding wild-type (WT) homozygous littermates (WT+DHA) for 6 wk. The PUFA status of different tissues was determined by GC and compared with control groups (CF and WT). There was an alteration in the (n-6) PUFA pathway in several CF-target organs in CF compared with WT mice, as evidenced by a higher level of arachidonic acid (AA) in membrane phospholipids or whole tissue (21 and 39% in duodenum-jejunum, 32 and 38% in ileum, and 19 and 43% in pancreas). Elevated AA levels were associated with lower linoleic acid (LA) and higher dihomo-gamma-linolenic acid levels. No DHA deficiency was observed. GPL-DHA treatment resulted in different PUFA composition changes depending on the tissue (increase in LA, decrease in elevated AA, DHA increase, increase in (n-6)/(n-3) fatty acid ratio). However, the DHA/AA ratio consistently increased in all tissues in CF+DHA and WT+DHA mice. Our study demonstrates the effectiveness of an original oral DHA formulation in counter-balancing the abnormal (n-6) fatty acid metabolism in organs of CF mice when administrated at a low dose and highlights the potential of the use of GPL-DHA as nutritherapy for CF patients
    corecore