30 research outputs found

    Navigating virtual conferences as a junior researcher

    Get PDF

    Extending Continental Lithosphere With Lateral Strength Variations: Effects on Deformation Localization and Margin Geometries

    Get PDF
    We investigate the development of margin geometries during extension of a continental lithosphere containing lateral strength variations. These strength variations may originate from the amalgamation of continents with different mechanical properties as was probably the case when Pangea was assembled. Our aim is to infer if localization of deformation is controlled by the boundary between two lithospheres with different mechanical properties (e.g., “weak” and “strong”) or not. We ran a series of lithosphere-scale physical analog models in which we vary the strength contrast across equally sized lithospheric domains. The models show that deformation always localizes in the relatively weaker compartment, not at the contact between the two domains because the contact is unfavorably oriented for the applied stress and does not behave as a weak, inherited discontinuity. Wide-rifts develop under coupled conditions when the weak lithosphere consists of a brittle crust, ductile crust and ductile mantle. When a brittle upper mantle layer is included in the weak segment, the rift system develops in two phases. First, a wide rift forms until the mechanically strong upper mantle develops a necking instability after which the weak lower crust and weak upper mantle become a coupled, narrow rift system. The margin geometries that result from this two-phase evolution show asymmetry in terms of crustal thickness and basin distribution. This depends heavily on the locus of failure of the strong part of the upper mantle. The models can explain asymmetric conjugate margin geometries without using weak zones to guide deformation localization

    Plume‐Induced Sinking of Intracontinental Lithospheric Mantle: An Overlooked Mechanism of Subduction Initiation?

    Get PDF
    Although many different mechanisms for subduction initiation have been proposed, only few of them are viable in terms of consistency with observations and reproducibility in numerical experiments. In particular, it has recently been demonstrated that intra-oceanic subduction triggered by an upwelling mantle plume could greatly contribute to the onset and operation of plate tectonics in the early and, to a lesser degree, modern Earth. On the contrary, the initiation of intra-continental subduction still remains underappreciated. Here we provide an overview of 1) observational evidence for upwelling of hot mantle material flanked by downgoing proto-slabs of sinking continental mantle lithosphere, and 2) previously published and new numerical models of plume-induced subduction initiation. Numerical modeling shows that under the condition of a sufficiently thick (>100 km) continental plate, incipient downthrusting at the level of the lowermost lithospheric mantle can be triggered by plume anomalies of moderate temperatures and without significant strain- and/or melt-related weakening of overlying rocks. This finding is in contrast with the requirements for plume-induced subduction initiation within oceanic or thinner continental lithosphere. As a result, plume-lithosphere interactions within continental interiors of Paleozoic-Proterozoic-(Archean) platforms are the least demanding (and thus potentially very common) mechanism for initiation of subduction-like foundering in the Phanerozoic Earth. Our findings are supported by a growing body of new geophysical data collected in various intra-continental areas. A better understanding of the role of intra-continental mantle downthrusting and foundering in global plate tectonics and, particularly, in the initiation of “classic” ocean-continent subduction will benefit from more detailed follow-up investigations

    Crustal structure of the Niuafo’ou Microplate and Fonualei Rift and Spreading Center in the northeastern Lau Basin, Southwestern Pacific

    Get PDF
    Key points: First insights into the crustal structure of the northeastern Lau Basin, along a 290 km transect at 17°20’S. Crust in southern Fonualei Rift and Spreading Center was created by extension of arc crust and variable amount of magmatism. Magmatic underplating is present in some parts of the southern Niuafo’ou Microplate The northeastern Lau Basin is one of the fastest opening and magmatically most active back‐arc regions on Earth. Although the current pattern of plate boundaries and motions in this complex mosaic of microplates is reasonably understood, the internal structure and evolution of the back‐arc crust are not. We present new geophysical data from a 290 km long east‐west oriented transect crossing the Niuafo’ou Microplate (back‐arc), the Fonualei Rift and Spreading Centre (FRSC) and the Tofua Volcanic Arc at 17°20’S. Our P‐wave tomography model and density modelling suggests that past crustal accretion inside the southern FRSC was accommodated by a combination of arc crustal extension and magmatic activity. The absence of magnetic reversals inside the FRSC supports this and suggests that focused seafloor spreading has until now not contributed to crustal accretion. The back‐arc crust constituting the southern Niuafo’ou Microplate reveals a heterogeneous structure comprising several crustal blocks. Some regions of the back‐arc show a crustal structure similar to typical oceanic crust, suggesting they originate from seafloor spreading. Other crustal blocks resemble a structure that is similar to volcanic arc crust or a ‘hydrous’ type of oceanic crust that has been created at a spreading center influenced by slab‐derived water at distances < 50 km to the arc. Throughout the back‐arc region we observe a high‐velocity (Vp 7.2‐7.5 km s‐1) lower crust, which is an indication for magmatic underplating, which is likely sustained by elevated upper mantle temperatures in this region

    Plume‐Induced Sinking of Intracontinental Lithospheric Mantle: An Overlooked Mechanism of Subduction Initiation?

    Get PDF
    Although many different mechanisms for subduction initiation have been proposed, only few of them are viable in terms of consistency with observations and reproducibility in numerical experiments. In particular, it has recently been demonstrated that intra‐oceanic subduction triggered by an upwelling mantle plume could greatly contribute to the onset and operation of plate tectonics in the early and, to a lesser degree, modern Earth. On the contrary, the initiation of intra‐continental subduction still remains underappreciated. Here we provide an overview of 1) observational evidence for upwelling of hot mantle material flanked by downgoing proto‐slabs of sinking continental mantle lithosphere, and 2) previously published and new numerical models of plume‐induced subduction initiation. Numerical modeling shows that under the condition of a sufficiently thick (>100 km) continental plate, incipient downthrusting at the level of the lowermost lithospheric mantle can be triggered by plume anomalies of moderate temperatures and without significant strain‐ and/or melt‐related weakening of overlying rocks. This finding is in contrast with the requirements for plume‐induced subduction initiation within oceanic or thinner continental lithosphere. As a result, plume‐lithosphere interactions within continental interiors of Paleozoic‐Proterozoic‐(Archean) platforms are the least demanding (and thus potentially very common) mechanism for initiation of subduction‐like foundering in the Phanerozoic Earth. Our findings are supported by a growing body of new geophysical data collected in various intra‐continental areas. A better understanding of the role of intra‐continental mantle downthrusting and foundering in global plate tectonics and, particularly, in the initiation of “classic” ocean‐continent subduction will benefit from more detailed follow‐up investigations

    Plume-Induced Sinking of the Intracontinental Lithosphere as a Fundamentally New Mechanism of Subduction Initiation

    Get PDF
    Although many different mechanisms for subduction initiation have been proposed, few of them are viable in terms of agreement with observations and reproducibility in numerical experiments. In particular, it has recently been demonstrated that intra-oceanic subduction triggered by an upwelling mantle plume could contribute greatly to the onset and functioning of plate tectonics in the early Earth and, to a lesser extent, in the modern Earth. In contrast, the onset of intracontinental subduction is still underestimated. Here we review 1) observations demonstrating the upwelling of hot mantle material flanked by sinking proto-slabs of the continental mantle lithosphere, and 2) previously published and new numerical models of plume-induced subduction initiation. Numerical modelling shows that under the condition of a sufficiently thick (&gt; 100 km) continental plate, incipient down thrusting at the level of the lowermost lithospheric mantle can be triggered by plume anomalies with moderate temperatures and without significant strain and/or melt-induced weakening of the overlying rocks. This finding is in contrast to the requirements for plume-induced subduction initiation in oceanic or thin continental lithosphere. Consequently, plume-lithosphere interactions in the continental interior of Paleozoic-Proterozoic (Archean) platforms are the least demanding (and therefore potentially very common) mechanism for triggering subduction-like foundering in Phanerozoic Earth. Our findings are supported by a growing body of new geophysical data collected in a variety of intracontinental settings. A better understanding of the role of intracontinental mantle downthrusting and foundering in global plate tectonics and, in particular, in triggering "classic" oceanic-continental subduction will benefit from further detailed follow-up studies

    The Oceanographer transform fault revisited - preliminary results from a micro-seismicity survey reveals extensional tectonics at ridge-transform intersections

    Get PDF
    European Geosciences Union (EGU) General Assembly, 23-27 May 2022, Vienna, AustriaFracture zones were recognized to be an integral part of the seabed long before plate tectonics was established. Later, plate tectonics linked fracture zones to oceanic transform faults, suggesting that they are the inactive and hence fossil trace of transforms. Yet, scientist have spent little time surveying them in much detail over the last three decades. Recent evidence (Grevemeyer, I., RĂŒpke, L.H., Morgan, J.P., Iyer, K, and Devey, C.W., 2021, Extensional tectonics and two-stage crustal accretion at oceanic transform faults, Nature, 591, 402–407, doi:10.1038/s41586-021-03278-9) suggests that the traditional concept of transform faults as being conservative (non-accretionary) plate boundary faults might be wrong. Instead, transform faults are always deeper than the associated fracture zones and numerical modelling results suggest that transform faults seem to suffer from extensional tectonics below their strike-slip surface fault zone. During the cruise M170 of the German research vessel METEOR early in 2021, we aimed to test this hypothesis by collecting, in a pilot study, micro-seismicity data from the Oceanographer transform fault which offsets the Mid-Atlantic Ridge by 120-km south of the Azores near 35°N. Preliminary analysis of 10-days of seismicity data recorded at 26 ocean-bottom-seismometers and hydrophones showed 10-15 local earthquakes per day. Along the transform fault the distribution of micro-earthquakes and focal mechanisms support strike-slip motion. However, at both ridge-transform intersections seismicity does not mimic a right-angular plate boundary; instead, seismicity occurs below the inside corner and focal mechanism indicate extensional tectonics. Therefore, micro-seismicity supports features found in numerical simulations, revealing that transform faults have an extensional as well as a strike-slip componentPeer reviewe

    Mediterranean-Black Sea gateway exchange: Scientific drilling workshop on the BlackGate project

    Get PDF
    The MagellanPlus workshop "BlackGate"addressed fundamental questions concerning the dynamic evolution of the Mediterranean-Black Sea (MBS) gateway and its palaeoenvironmental consequences. This gateway drives the Miocene-Quaternary circulation patterns in the Black Sea and governs its present status as the world's largest example of marine anoxia. The exchange history of the MBS gateway is poorly constrained because continuous Pliocene-Quaternary deposits are not exposed on land adjacent to the Black Sea or northern Aegean. Gateway exchange is controlled by climatic (glacio-eustatic-driven sea-level fluctuations) and tectonic processes in the catchment as well as tectonic propagation of the North Anatolian Fault Zone (NAFZ) in the gateway area itself. Changes in connectivity trigger dramatic palaeoenvironmental and biotic turnovers in both the Black Sea and Mediterranean domains. Drilling a Messinian to Holocene transect across the MBS gateway will recover high-amplitude records of continent-scale hydrological changes during glacial-interglacial cycles and allow us to reconstruct marine and freshwater fluxes, biological turnover events, deep biospheric processes, subsurface gradients in primary sedimentary properties, patterns and processes controlling anoxia, chemical perturbations and carbon cycling, growth and propagation of the NAFZ, the timing of land bridges for Africa and/or Asia-Europe mammal migration, and the presence or absence of water exchange during the Messinian salinity crisis. During thorough discussions at the workshop, three key sites were selected for potential drilling using a mission-specific platform (MSP): one on the Turkish margin of the Black Sea (Arkhangelsky Ridge, 400mb.s.f., metres below the seafloor), one on the southern margin of the Sea of Marmara (North Imrali Basin, 750mb.s.f.), and one in the Aegean (North Aegean Trough, 650mb.s.f.). All sites target Quaternary oxic-anoxic marl-sapropel cycles. Plans include recovery of Pliocene lacustrine sediments and mixed marine-brackish Miocene sediments from the Black Sea and the Aegean. MSP drilling is required because the JOIDES Resolution cannot pass under the Bosporus bridges. The wider goals are in line with the aims and scope of the International Ocean Discovery Program (IODP) "2050 Science Framework: Exploring Earth by Scientific Ocean Drilling"and relate specifically to the strategic objectives "Earth's climate system", "Tipping points in Earth's history", and "Natural hazards impacting society"

    Du rifting continental aux marges conjuguées : aperçus de la modélisation analogique et numérique

    No full text
    The South Atlantic conjugate margins are the product of continental rifting and break-up of Pangea, which was made up of different crustal features prior to rifting. This study investigates continental rift initiation and break-up of alternative lithospheric setups, consisting of large segments with different rheological strength, with the use of analogue and numerical modelling. The analogue models investigate the effect of far-field forces on a system that consist of multiple rheological segments, whereas the numerical models include thermal processes and focus on the impact of initial plume emplacement on such a setup.Lithosphere-scale analogue models consisting of two different rheological compartments have been subjected to extensional forces, to understand effect of far-field forces on large rheological heterogeneities in a system within an extensional tectonic regime. The results show that in such a system, the weaker segment accommodates all the extension. At the contact between the two compartments no rift-initiation is observed. In the presence of a strong sub-Moho mantle, the rift evolution consists of two phases. The first phase is a wide or distributed rift event. Once the strong part of the upper mantle has sufficiently weakened, the rift localizes and a narrow rift continues to accommodate the extension. If extension would continue, break-up would happen at the location of the narrow rift, thereby breaking a rather homogenous part within a laterally heterogeneous system. This would result in asymmetric margins with hyperextended, weak crust on both margins.The numerical results show that, in the case of plume-induced continental break-up, the classical ‘central’ mode of break-up, where the break-up centre develops above the plume-impingement point is not the only form of continental break-up. When the mantle anomaly is located off-set from the contact between rheological segments, a ‘shifted’ mode of break-up may develop. In this case, the mantle plume material rises to the base of the lithosphere and migrates laterally to the contact between two rheological segments where rifting initiates. Mantle material that does not reach the spreading centre and remains at lower crustal depths, resemble high density/high velocity bodies at depth found along the South Atlantic margin and providing geometric asymmetry.Further investigation on the exact influence of the initial plume position with respect to the contact between the rheological compartments shows that there is a critical distance for which the system develops either ‘central’ (or ‘plume-induced’) continental break-up or ‘shifted’ (or ‘structural inherited’) continental break-up. For Moho temperatures of 500 – 600 oC, there is a window of ~50 km where the system creates two break-up branches. These results explain complex rift systems with both vertical penetration of plume material into the overlying lithosphere as well as reactivated inherited structures developing break-up systems both aided by the same mantle plume...Les marges conjuguĂ©es de l'Atlantique Sud sont le produit du rifting et de la rupture du continent PangĂ©e. Ce continent prĂ©sente une hĂ©tĂ©rogĂ©nĂ©itĂ© crustale et lithosphĂ©rique importante, dont la prise en compte est un objectif de la thĂšse. Afin de comprendre la rupture continentale Ă  l'Ă©chelle lithosphĂ©rique de systĂšmes de rhĂ©ologies prĂ©existantes trĂšs diffĂ©rentes, nous avons effectuĂ© des modĂ©lisations, analogique et numĂ©rique. Les modĂšles analogiques s'attachent Ă  montrer l'effet des forces externes sur un tel systĂšme hĂ©tĂ©rogĂšne tandis que les modĂšles numĂ©riques, thermomĂ©caniques, se concentrent sur l'impact des anomalies de fusion du manteau sur le rifting avec une telle configuration.Avec la modĂ©lisation analogique, l'effet des forces aux limites sur un systĂšme composĂ© de deux segments de rhĂ©ologies diffĂ©rentes a Ă©tĂ© testĂ© Ă  l’échelle de la lithosphĂšre pour comprendre l'influence de l'hĂ©tĂ©rogĂ©nĂ©itĂ© rhĂ©ologique dans un systĂšme en extension. Les rĂ©sultats montrent que dans un systĂšme combinĂ©, toute l'extension se produit dans le segment faible et que le contact entre les deux segments ne joue pratiquement aucun rĂŽle dans l'initiation des failles. Lorsque le segment le plus faible contient une couche rĂ©sistante dans le manteau supĂ©rieur, le rift Ă©volue en deux phases. La premiĂšre phase montre un systĂšme de failles larges oĂč la dĂ©formation est distribuĂ©e. Une fois que la partie rĂ©sistante du manteau supĂ©rieur est suffisamment affaiblie, l'extension se localise le long d'une zone de faille Ă©troite. Si l'extension continuait, la rupture se produirait Ă  cet emplacement, dans une partie plutĂŽt homogĂšne alors que le systĂšme est latĂ©ralement hĂ©tĂ©rogĂšne. Le rĂ©sultat de ce systĂšme extensif serait des marges asymĂ©triques avec une croĂ»te faible/hyper-Ă©tirĂ©e sur deux marges.Les rĂ©sultats numĂ©riques montrent que, dans le cas de la rupture continentale induite par un panache, le mode de rupture «central», oĂč la rupture se localise au-dessus du point de l'impact du panache, est une forme de rupture continentale parmi d'autres. Ainsi, lorsque l'anomalie de fusion du manteau est localisĂ©e de maniĂšre dĂ©calĂ©e par rapport au contact entre les segments rhĂ©ologiques, un mode de rupture "dĂ©calĂ©" peut se dĂ©velopper. Dans ce cas, le matĂ©riel du panache atteint la base de la lithosphĂšre et s’écoule latĂ©ralement jusqu’au contact entre les deux segments rhĂ©ologiques oĂč le rifting se localise in fine. La partie du matĂ©riel qui n’arrive pas au centre de la zone de rupture, se situe au niveau de la croĂ»te infĂ©rieure ou bien plus profond, ressemblant aux corps de densitĂ©/vitesse Ă©levĂ©es imagĂ©s le long des marges de l'Atlantique Sud. De plus, le mode «dĂ©calé» reproduit l'asymĂ©trie des marges conjuguĂ©es..
    corecore