23 research outputs found

    Wind, waves, and acoustic background levels at Station ALOHA

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C03017, doi:10.1029/2011JC007267.Frequency spectra from deep-ocean near-bottom acoustic measurements obtained contemporaneously with wind, wave, and seismic data are described and used to determine the correlations among these data and to discuss possible causal relationships. Microseism energy appears to originate in four distinct regions relative to the hydrophone: wind waves above the sensors contribute microseism energy observed on the ocean floor; a fraction of this local wave energy propagates as seismic waves laterally, and provides a spatially integrated contribution to microseisms observed both in the ocean and on land; waves in storms generate microseism energy in deep water that travels as seismic waves to the sensor; and waves reflected from shorelines provide opposing waves that add to the microseism energy. Correlations of local wind speed with acoustic and seismic spectral time series suggest that the local Longuet-Higgins mechanism is visible in the acoustic spectrum from about 0.4 Hz to 80 Hz. Wind speed and acoustic levels at the hydrophone are poorly correlated below 0.4 Hz, implying that the microseism energy below 0.4 Hz is not typically generated by local winds. Correlation of ocean floor acoustic energy with seismic spectra from Oahu and with wave spectra near Oahu imply that wave reflections from Hawaiian coasts, wave interactions in the deep ocean near Hawaii, and storms far from Hawaii contribute energy to the seismic and acoustic spectra below 0.4 Hz. Wavefield directionality strongly influences the acoustic spectrum at frequencies below about 2 Hz, above which the acoustic levels imply near-isotropic surface wave directionality.Funding for the ALOHA Cabled Observatory was provided by the National Science Foundation and the State of Hawaii through the School of Ocean and Earth Sciences and Technology at the University of Hawaii-Manoa (F. Duennebier, PI). Donations from AT&T and TYCOM and the cooperation of the U.S. Navy made this project possible. The WHOI-Hawaii Ocean Time series Station (WHOTS) mooring is maintained by Woods Hole Oceanographic Institution (PIs R. Weller and A. Plueddemann) with funding from the NOAA Climate Program Office/Climate Observation Division. NSF grant OCE- 0926766 supported R. Lukas (co-PI) to augment and collaborate on the maintenance of WHOTS. Lukas was also supported during this analysis by The National Ocean Partnership Program “Advanced Coupled Atmosphere-Wave-Ocean Modeling for Improving Tropical Cyclone Prediction Models” under contract N00014-10-1-0154 to the University of Rhode Island (I. Ginis, PI).2012-09-1

    Expert Consensus Guidelines for Stocking of Antidotes in Hospitals That Provide Emergency Care

    Get PDF
    We provide recommendations for stocking of antidotes used in emergency departments (EDs). An expert panel representing diverse perspectives (clinical pharmacology, medical toxicology, critical care medicine, hematology/oncology, hospital pharmacy, emergency medicine, emergency medical services, pediatric emergency medicine, pediatric critical care medicine, poison centers, hospital administration, and public health) was formed to create recommendations for antidote stocking. Using a standardized summary of the medical literature, the primary reviewer for each antidote proposed guidelines for antidote stocking to the full panel. The panel used a formal iterative process to reach their recommendation for both the quantity of antidote that should be stocked and the acceptable timeframe for its delivery. The panel recommended consideration of 45 antidotes; 44 were recommended for stocking, of which 23 should be immediately available. In most hospitals, this timeframe requires that the antidote be stocked in a location that allows immediate availability. Another 14 antidotes were recommended for availability within 1 hour of the decision to administer, allowing the antidote to be stocked in the hospital pharmacy if the hospital has a mechanism for prompt delivery of antidotes. The panel recommended that each hospital perform a formal antidote hazard vulnerability assessment to determine its specific need for antidote stocking. Antidote administration is an important part of emergency care. These expert recommendations provide a tool for hospitals that offer emergency care to provide appropriate care of poisoned patients

    Planktonic foraminifera in late Eocene to Pleistocene sediments of ODP Hole 120-747A and 120-749B

    No full text
    Late Eocene to Pleistocene planktonic foraminifers from Leg 120 Holes 747A and 749B on the Kerguelen Plateau were quantitatively analyzed. Microperforate tenuitellid forms dominate the Oligocene to middle Miocene, and 17 species (including the new species Tenuitella jamesi and Tenuitellinata selleyi) are recorded. A lineage zonation of tenuitellid foraminifers is proposed as an alternative scheme for refinement of the Oligocene-Miocene biostratigraphy in high latitudes. Progressive or abrupt alterations in morphological characters within this lineage, producing different morphotypes or species, coincided with prolonged or sudden changes in paleoclimate. These microperforate planktonic foraminifers thus appear to have potential as indicators of cold-water masses and temperature fluctuations in post-Eocene oceans
    corecore